I presume that the following will give me 10 volatile ints
volatile int foo[10];
However, I don't think the following will do the same thing.
volatile int* foo;
foo = malloc(sizeof(int)*10);
Please correct me if I am wrong about this and how I can have a volatile array of items using malloc.
Thanks.
int volatile * foo;
read from right to left "foo is a pointer to a volatile int"
so whatever int you access through foo, the int will be volatile.
P.S.
int * volatile foo; // "foo is a volatile pointer to an int"
==
volatile int * foo; // foo is a pointer to an int, volatile
Meaning foo is volatile. The second case is really just a leftover of the general right-to-left rule.
The lesson to be learned is get in the habit of using
char const * foo;
instead of the more common
const char * foo;
If you want more complicated things like "pointer to function returning pointer to int" to make any sense.
P.S., and this is a biggy (and the main reason I'm adding an answer):
I note that you included "multithreading" as a tag. Do you realize that volatile does little/nothing of good with respect to multithreading?
volatile int* foo;
is the way to go. The volatile type qualifier works just like the const type qualifier. If you wanted a pointer to a constant array of integer you would write:
const int* foo;
whereas
int* const foo;
is a constant pointer to an integer that can itself be changed. volatile works the same way.
Yes, that will work. There is nothing different about the actual memory that is volatile
. It is just a way to tell the compiler how to interact with that memory.
I think the second declares the pointer to be volatile, not what it points to. To get that, I think it should be
int * volatile foo;
This syntax is acceptable to gcc
, but I'm having trouble convincing myself that it does anything different.
I found a difference with gcc -O3
(full optimization). For this (silly) test code:
volatile int v [10];
int * volatile p;
int main (void)
{
v [3] = p [2];
p [3] = v [2];
return 0;
}
With volatile
, and omitting (x86) instructions which don't change:
movl p, %eax
movl 8(%eax), %eax
movl %eax, v+12
movl p, %edx
movl v+8, %eax
movl %eax, 12(%edx)
Without volatile, it skips reloading p
:
movl p, %eax
movl 8(%eax), %edx ; different since p being preserved
movl %edx, v+12
; 'p' not reloaded here
movl v+8, %edx
movl %edx, 12(%eax) ; p reused
After many more science experiments trying to find a difference, I conclude there is no difference. volatile
turns off all optimizations related to the variable which would reuse a subsequently set value. At least with x86 gcc (GCC) 4.1.2 20070925 (Red Hat 4.1.2-33). :-)
Thanks very much to wallyk, I was able to devise some code use his method to generate some assembly to prove to myself the difference between the different pointer methods.
using the code: and compiling with -03
int main (void)
{
while(p[2]);
return 0;
}
when p is simply declared as pointer, we get stuck in a loop that is impossible to get out of. Note that if this were a multithreaded program and a different thread wrote p[2] = 0, then the program would break out of the while loop and terminate normally.
int * p;
============
LCFI1:
movq _p(%rip), %rax
movl 8(%rax), %eax
testl %eax, %eax
jne L6
xorl %eax, %eax
leave
ret
L6:
jmp L6
notice that the only instruction for L6 is to goto L6.
==
when p is volatile pointer
int * volatile p;
==============
L3:
movq _p(%rip), %rax
movl 8(%rax), %eax
testl %eax, %eax
jne L3
xorl %eax, %eax
leave
ret
here, the pointer p gets reloaded each loop iteration and as a consequence the array item also gets reloaded. However, this would not be correct if we wanted an array of volatile integers as this would be possible:
int* volatile p;
..
..
int* j;
j = &p[2];
while(j);
and would result in the loop that would be impossible to terminate in a multithreaded program.
==
finally, this is the correct solution as tony nicely explained.
int volatile * p;
LCFI1:
movq _p(%rip), %rdx
addq $8, %rdx
.align 4,0x90
L3:
movl (%rdx), %eax
testl %eax, %eax
jne L3
leave
ret
In this case the the address of p[2] is kept in register value and not loaded from memory, but the value of p[2] is reloaded from memory on every loop cycle.
also note that
int volatile * p;
..
..
int* j;
j = &p[2];
while(j);
will generate a compile error.