I have a set of data that is periodic (but not sinusoidal). I have a set of time values in one vector and a set of amplitudes in a second vector. I'd like to quickly approximate the period of the function. Any suggestions?
Specifically, here's my current code. I'd like to approximate the period of the vector x(:,2) against the vector t. Ultimately, I'd like to do this for lots of initial conditions and calculate the period of each and plot the result.
function xdot = f (x,t)
xdot(1) =x(2);
xdot(2) =-sin(x(1));
endfunction
x0=[1;1.75]; #eventually, I'd like to try lots of values for x0(2)
t = linspace (0, 50, 200);
x = lsode ("f", x0, t)
plot(x(:,1),x(:,2));
Thank you!
John
Take a look at the auto correlation function.
From Wikipedia
Autocorrelation is the
cross-correlation of a signal with
itself. Informally, it is the
similarity between observations as a
function of the time separation
between them. It is a mathematical
tool for finding repeating patterns,
such as the presence of a periodic
signal which has been buried under
noise, or identifying the missing
fundamental frequency in a signal
implied by its harmonic frequencies.
It is often used in signal processing
for analyzing functions or series of
values, such as time domain signals.
Paul Bourke has a description of how to calculate the autocorrelation function effectively based on the fast fourier transform (link).
The Discrete Fourier Transform can give you the periodicity. A longer time window gives you more frequency resolution so I changed your t
definition to t = linspace(0, 500, 2000)
.
time domain http://img402.imageshack.us/img402/8775/timedomain.png (here's a link to the plot, it looks better on the hosting site).
You could do:
h = hann(length(x), 'periodic'); %# use a Hann window to reduce leakage
y = fft(x .* [h h]); %# window each time signal and calculate FFT
df = 1/t(end); %# if t is in seconds, df is in Hz
ym = abs(y(1:(length(y)/2), :)); %# we just want amplitude of 0..pi frequency components
semilogy(((1:length(ym))-1)*df, ym);
frequency domain http://img406.imageshack.us/img406/2696/freqdomain.png Plot link.
Looking at the graph, the first peak is at around 0.06 Hz, corresponding to the 16 second period seen in plot(t,x)
.
This isn't computationally that fast though. The FFT is N*log(N) operations.