I am currently trying to extract series of consecutive occurrences in a PySpark dataframe and order/rank them as shown below (for convenience I have ordered the initial dataframe by user_id
and timestamp
):
df_ini
+-------+--------------------+------------+
|user_id| timestamp | actions |
+-------+--------------------+------------+
| 217498| 100000001| 'A' |
| 217498| 100000025| 'A' |
| 217498| 100000124| 'A' |
| 217498| 100000152| 'B' |
| 217498| 100000165| 'C' |
| 217498| 100000177| 'C' |
| 217498| 100000182| 'A' |
| 217498| 100000197| 'B' |
| 217498| 100000210| 'B' |
| 854123| 100000005| 'A' |
| 854123| 100000007| 'A' |
| etc.
to :
expected df_transformed
+-------+------------+------------+------------+
|user_id| actions | nb_of_occ | order |
+-------+------------+------------+------------+
| 217498| 'A' | 3 | 1 |
| 217498| 'B' | 1 | 2 |
| 217498| 'C' | 2 | 3 |
| 217498| 'A' | 1 | 4 |
| 217498| 'B' | 2 | 5 |
| 854123| 'A' | 2 | 1 |
| etc.
My guess is that I have to use a smart window function that partition the table by user_id and actions but only when these actions are consecutive in time ! Which I can't figure how to do...
If someone encountered this type of transformation in PySpark before I'd be glad to get a hint!
Cheers
This is a pretty common pattern and can be expressed using window functions in a few steps. First import required functions:
from pyspark.sql.functions import sum as sum_, lag, col, coalesce, lit
from pyspark.sql.window import Window
Next define a window:
w = Window.partitionBy("user_id").orderBy("timestamp")
Mark first row for each group:
is_first = coalesce(
(lag("actions", 1).over(w) != col("actions")).cast("bigint"),
lit(1)
)
Define order
:
order = sum_("is_first").over(w)
And combine all part together with an aggregation:
(df
.withColumn("is_first", is_first)
.withColumn("order", order)
.groupBy("user_id", "actions", "order")
.count())
If you define df
as:
df = sc.parallelize([
(217498, 100000001, 'A'), (217498, 100000025, 'A'), (217498, 100000124, 'A'),
(217498, 100000152, 'B'), (217498, 100000165, 'C'), (217498, 100000177, 'C'),
(217498, 100000182, 'A'), (217498, 100000197, 'B'), (217498, 100000210, 'B'),
(854123, 100000005, 'A'), (854123, 100000007, 'A')
]).toDF(["user_id", "timestamp", "actions"])
and order the result by user_id
and order
you'll get:
+-------+-------+-----+-----+
|user_id|actions|order|count|
+-------+-------+-----+-----+
| 217498| A| 1| 3|
| 217498| B| 2| 1|
| 217498| C| 3| 2|
| 217498| A| 4| 1|
| 217498| B| 5| 2|
| 854123| A| 1| 2|
+-------+-------+-----+-----+
I'm afraid it is not possible using standard dataframe windowing functions. But you can still use old RDD API groupByKey()
to achieve that transformation:
>>> from itertools import groupby
>>>
>>> def recalculate(records):
... actions = [r.actions for r in sorted(records[1], key=lambda r: r.timestamp)]
... groups = [list(g) for k, g in groupby(actions)]
... return [(records[0], g[0], len(g), i+1) for i, g in enumerate(groups)]
...
>>> df_ini.rdd.map(lambda row: (row.user_id, row)) \
... .groupByKey().flatMap(recalculate) \
... .toDF(['user_id', 'actions', 'nf_of_occ', 'order']).show()
+-------+-------+---------+-----+
|user_id|actions|nf_of_occ|order|
+-------+-------+---------+-----+
| 217498| A| 3| 1|
| 217498| B| 1| 2|
| 217498| C| 2| 3|
| 217498| A| 1| 4|
| 217498| B| 2| 5|
| 854123| A| 2| 1|
+-------+-------+---------+-----+