I am trying to implement expandable CNN by using Taylor's non-linear expansion in keras
. The basic idea is the first input node can be decomposed into multiple nodes with different orders and coefficients. Decomposing single nodes to multiple ones can generate different non-linear line connection that generated by Taylor series. Can anyone give me a possible idea of how to expand CNN
with Taylor non-linear expansion? How to efficiently do Taylor non-linear expansion on CNN? any thought?
I cannot quite understand how to decompose the input node to multiple ones with different non-linear line connections that generation by Taylor series. as far as I know, the Taylor series is an approximation function but the decomposing node is not quite intuitive to me in terms of implementation. How to implement a decomposing input node to multiple ones in python? How to make this happen easily? any idea?
my attempt:
import tensorflow as tf
import numpy as np
import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten
from keras.datasets import cifar10
from keras.utils import to_categorical
(train_imgs, train_label), (test_imgs, test_label)= cifar10.load_data()
output_class = np.unique(train_label)
n_class = len(output_class)
nrows_tr, ncols_tr, ndims_tr = train_imgs.shape[1:]
nrows_ts, ncols_ts, ndims_ts = test_imgs.shape[1:]
train_data = train_imgs.reshape(train_imgs.shape[0], nrows_tr, ncols_tr, ndims_tr)
test_data = test_imgs.reshape(test_imgs.shape[0], nrows_ts, ncols_ts, ndims_ts)
input_shape = (nrows_tr, ncols_tr, ndims_tr)
train_data = train_data.astype('float32')
trast_data = test_data.astype('float32')
train_data //= 255
test_data //= 255
train_label_one_hot = to_categorical(train_label)
test_label_one_hot = to_categorical(test_label)
def pown(x,n):
return(x**n)
def expandable_cnn(input_shape, output_shape, approx_order):
inputs=Input(shape=(input_shape))
x= Dense(input_shape)(inputs)
y= Dense(output_shape)(x)
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3,3), padding='same', activation="relu", input_shape=input_shape))
model.add(Conv2D(filters=32, kernel_size=(3,3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
for i in range(2, approx_order+1):
y=add([y, Dense(output_shape)(Activation(lambda x: pown(x, n=i))(x))])
model.add(Dense(n_class, activation='softmax')(y))
return model
but when I ran the above model, I had bunch of compile errors and dimension error. I assume that the way for Tylor non-linear expansion for CNN model may not be correct. Also, I am not sure how to represent weight. How to make this work? any possible idea of how to correct my attempt?
desired output:
I am expecting to extend CNN with Taylor non-linear expansion, how to make the above implementation correct and efficient? can anyone point me out how to correctly implement expandable CNN with Taylor series? any possible idea or approach?