可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I am trying to implement a Siamese network that takes in two images. I load these images and create two separate dataloaders.
In my loop I want to go through both dataloaders simultaneously so that I can train the network on both images.
for i, data in enumerate(zip(dataloaders1, dataloaders2)):
# get the inputs
inputs1 = data[0][0].cuda(async=True);
labels1 = data[0][1].cuda(async=True);
inputs2 = data[1][0].cuda(async=True);
labels2 = data[1][1].cuda(async=True);
labels1 = labels1.view(batchSize,1)
labels2 = labels2.view(batchSize,1)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs1 = alexnet(inputs1)
outputs2 = alexnet(inputs2)
The return value of the dataloader is a tuple.
However, when I try to use zip
to iterate over them, I get the following error:
OSError: [Errno 24] Too many open files
Exception NameError: "global name 'FileNotFoundError' is not defined" in <bound method _DataLoaderIter.__del__ of <torch.utils.data.dataloader._DataLoaderIter object at 0x7f2d3c00c190>> ignored
Shouldn't zip work on all iterable items? But it seems like here I can't use it on dataloaders.
Is there any other way to pursue this? Or am I approaching the implementation of a Siamese network incorrectly?
回答1:
I see you are struggling to make a right dataloder function. i would do:
class Siamese(Dataset):
def __init__(self, transform=None):
#init data here
def __len__(self):
return #length of the data
def __getitem__(self, idx):
#get images and labels here
#returned images must be tensor
#labels should be int
return img1, img2 , label1, label2
回答2:
To complete @ManojAcharya's answer:
The error you are getting comes neither from zip()
nor DataLoader()
directly. Python is trying to tell you that it couldn't find one of the data files you are asking for (c.f. FileNotFoundError
in the exception trace), probably in your Dataset
.
Find below a working example using DataLoader
and zip
together. Note that if you want to shuffle your data, it becomes difficult to keep the correspondences between the 2 datasets. This justifies @ManojAcharya's solution.
import torch
from torch.utils.data import DataLoader, Dataset
class DummyDataset(Dataset):
"""
Dataset of numbers in [a,b] inclusive
"""
def __init__(self, a=0, b=100):
super(DummyDataset, self).__init__()
self.a = a
self.b = b
def __len__(self):
return self.b - self.a + 1
def __getitem__(self, index):
return index, "label_{}".format(index)
dataloaders1 = DataLoader(DummyDataset(0, 9), batch_size=2, shuffle=True)
dataloaders2 = DataLoader(DummyDataset(0, 9), batch_size=2, shuffle=True)
for i, data in enumerate(zip(dataloaders1, dataloaders2)):
print(data)
# ([tensor([ 4, 7]), ('label_4', 'label_7')], [tensor([ 8, 5]), ('label_8', 'label_5')])
# ([tensor([ 1, 9]), ('label_1', 'label_9')], [tensor([ 6, 9]), ('label_6', 'label_9')])
# ([tensor([ 6, 5]), ('label_6', 'label_5')], [tensor([ 0, 4]), ('label_0', 'label_4')])
# ([tensor([ 8, 2]), ('label_8', 'label_2')], [tensor([ 2, 7]), ('label_2', 'label_7')])
# ([tensor([ 0, 3]), ('label_0', 'label_3')], [tensor([ 3, 1]), ('label_3', 'label_1')])
回答3:
If you want to iterate over two datasets simultaneously, there is no need to define your own dataset class just use TensorDataset like below:
dataset = torch.utils.data.TensorDataset(dataset1, dataset2)
dataloader = DataLoader(dataset, batch_size=128, shuffle=True)
for index, (xb1, xb2) in enumerate(dataloader):
....
If you want the labels or iterating over more than two datasets just feed them as an argument to the TensorDataset after dataset2.
回答4:
Adding on @Aldream's solution for the case when we have varying length of the dataset and if we want to pass through them all at same epoch then we could use the cycle()
from itertools
, a Python Standard library. Using the code snippet of @Aldrem, the updated code will look like:
from torch.utils.data import DataLoader, Dataset
from itertools import cycle
class DummyDataset(Dataset):
"""
Dataset of numbers in [a,b] inclusive
"""
def __init__(self, a=0, b=100):
super(DummyDataset, self).__init__()
self.a = a
self.b = b
def __len__(self):
return self.b - self.a + 1
def __getitem__(self, index):
return index
dataloaders1 = DataLoader(DummyDataset(0, 100), batch_size=10, shuffle=True)
dataloaders2 = DataLoader(DummyDataset(0, 200), batch_size=10, shuffle=True)
num_epochs = 10
for epoch in range(num_epochs):
for i, data in enumerate(zip(cycle(dataloaders1), dataloaders2)):
print(data)
With only zip()
the iterator will be exhausted when the length is equal to that of the smallest dataset (here 100). But with the use of cycle()
, we will repeat the smallest dataset again unless our iterator looks at all the samples from the largest dataset (here 200).
P.S. One can always argue this approach may not be required to achieve convergence as long as one does samples randomly but with this approach, the evaluation might be easier.
回答5:
Further to what it is already mentioned, cycle()
and zip()
might create a memory leakage problem - especially when using image datasets! To solve that, instead of iterating like this:
dataloaders1 = DataLoader(DummyDataset(0, 100), batch_size=10, shuffle=True)
dataloaders2 = DataLoader(DummyDataset(0, 200), batch_size=10, shuffle=True)
num_epochs = 10
for epoch in range(num_epochs):
for i, (data1, data2) in enumerate(zip(cycle(dataloaders1), dataloaders2)):
do_cool_things()
you could use:
dataloaders1 = DataLoader(DummyDataset(0, 100), batch_size=10, shuffle=True)
dataloaders2 = DataLoader(DummyDataset(0, 200), batch_size=10, shuffle=True)
num_epochs = 10
for epoch in range(num_epochs):
dataloader_iterator = iter(dataloaders1)
for i, data1 in enumerate(dataloaders2)):
try:
data2 = next(dataloader_iterator)
except StopIteration:
dataloader_iterator = iter(dataloaders1)
data2 = next(dataloader_iterator)
do_cool_things()
Bare in mind that if you use labels as well, you should replace in this example data1
with (inputs1,targets1)
and data2
with inputs2,targets2
, as @Sajad Norouzi said.
KUDOS to this one: https://github.com/pytorch/pytorch/issues/1917#issuecomment-433698337