Asserting column(s) data type in Pandas

2020-06-03 01:57发布

问题:

I'm trying to find a better way to assert the column data type in Python/Pandas of a given dataframe.

For example:

import pandas as pd
t = pd.DataFrame({'a':[1,2,3], 'b':[2,6,0.75], 'c':['foo','bar','beer']})

I would like to assert that specific columns in the data frame are numeric. Here's what I have:

numeric_cols = ['a', 'b']  # These will be given
assert [x in ['int64','float'] for x in [t[y].dtype for y in numeric_cols]]

This last assert line doesn't feel very pythonic. Maybe it is and I'm just cramming it all in one hard to read line. Is there a better way? I would like to write something like:

assert t[numeric_cols].dtype.isnumeric()

I can't seem to find something like that though.

回答1:

You could use ptypes.is_numeric_dtype to identify numeric columns, ptypes.is_string_dtype to identify string-like columns, and ptypes.is_datetime64_any_dtype to identify datetime64 columns:

import pandas as pd
import pandas.api.types as ptypes

t = pd.DataFrame({'a':[1,2,3], 'b':[2,6,0.75], 'c':['foo','bar','beer'],
              'd':pd.date_range('2000-1-1', periods=3)})
cols_to_check = ['a', 'b']

assert all(ptypes.is_numeric_dtype(t[col]) for col in cols_to_check)
# True
assert ptypes.is_string_dtype(t['c'])
# True
assert ptypes.is_datetime64_any_dtype(t['d'])
# True

The pandas.api.types module (which I aliased to ptypes) has both a is_datetime64_any_dtype and a is_datetime64_dtype function. The difference is in how they treat timezone-aware array-likes:

In [239]: ptypes.is_datetime64_any_dtype(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
Out[239]: True

In [240]: ptypes.is_datetime64_dtype(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
Out[240]: False


回答2:

You can do this

import numpy as np
numeric_dtypes = [np.dtype('int64'), np.dtype('float64')]
# or whatever types you want

assert t[numeric_cols].apply(lambda c: c.dtype).isin(numeric_dtypes).all()