I'm trying to find a better way to assert the column data type in Python/Pandas of a given dataframe.
For example:
import pandas as pd
t = pd.DataFrame({'a':[1,2,3], 'b':[2,6,0.75], 'c':['foo','bar','beer']})
I would like to assert that specific columns in the data frame are numeric. Here's what I have:
numeric_cols = ['a', 'b'] # These will be given
assert [x in ['int64','float'] for x in [t[y].dtype for y in numeric_cols]]
This last assert line doesn't feel very pythonic. Maybe it is and I'm just cramming it all in one hard to read line. Is there a better way? I would like to write something like:
assert t[numeric_cols].dtype.isnumeric()
I can't seem to find something like that though.
You could use ptypes.is_numeric_dtype
to identify numeric columns, ptypes.is_string_dtype
to identify string-like columns, and ptypes.is_datetime64_any_dtype
to identify datetime64 columns:
import pandas as pd
import pandas.api.types as ptypes
t = pd.DataFrame({'a':[1,2,3], 'b':[2,6,0.75], 'c':['foo','bar','beer'],
'd':pd.date_range('2000-1-1', periods=3)})
cols_to_check = ['a', 'b']
assert all(ptypes.is_numeric_dtype(t[col]) for col in cols_to_check)
# True
assert ptypes.is_string_dtype(t['c'])
# True
assert ptypes.is_datetime64_any_dtype(t['d'])
# True
The pandas.api.types
module (which I aliased to ptypes
) has both a is_datetime64_any_dtype
and a is_datetime64_dtype
function. The difference is in how they treat timezone-aware array-likes:
In [239]: ptypes.is_datetime64_any_dtype(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
Out[239]: True
In [240]: ptypes.is_datetime64_dtype(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
Out[240]: False
You can do this
import numpy as np
numeric_dtypes = [np.dtype('int64'), np.dtype('float64')]
# or whatever types you want
assert t[numeric_cols].apply(lambda c: c.dtype).isin(numeric_dtypes).all()