I would like to visually plot a 3D graph of the error function calculated for a given slope and y-intercept for a linear regression. This graph will be used to illustrate a gradient descent application.
Let’s suppose we want to model a set of points with a line. To do this we’ll use the standard y=mx+b line equation where m is the line’s slope and b is the line’s y-intercept. To find the best line for our data, we need to find the best set of slope m and y-intercept b values.
A standard approach to solving this type of problem is to define an error function (also called a cost function) that measures how “good” a given line is. This function will take in a (m,b) pair and return an error value based on how well the line fits the data. To compute this error for a given line, we’ll iterate through each (x,y) point in the data set and sum the square distances between each point’s y value and the candidate line’s y value (computed at mx+b). It’s conventional to square this distance to ensure that it is positive and to make our error function differentiable. In python, computing the error for a given line will look like:
# y = mx + b
# m is slope, b is y-intercept
def computeErrorForLineGivenPoints(b, m, points):
totalError = 0
for i in range(0, len(points)):
totalError += (points[i].y - (m * points[i].x + b)) ** 2
return totalError / float(len(points))
Since the error function consists of two parameters (m and b) we can visualize it as a two-dimensional surface.
Now my question, how can we plot such 3D-graph using python ?
Here is a skeleton code to build a 3D plot. This code snippet is totally out of the question context but it show the basics for building a 3D plot. For my example i would need the x-axis being the slope, the y-axis being the y-intercept and the z-axis, the error.
Can someone help me build such example of graph ?
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import random
def fun(x, y):
return x**2 + y
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(-3.0, 3.0, 0.05)
X, Y = np.meshgrid(x, y)
zs = np.array([fun(x,y) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
ax.plot_surface(X, Y, Z)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
The above code produce the following plot, which is very similar to what i am looking for.