I am reading a Hive table using Spark SQL and assigning it to a scala val
val x = sqlContext.sql("select * from some_table")
Then I am doing some processing with the dataframe x and finally coming up with a dataframe y , which has the exact schema as the table some_table.
Finally I am trying to insert overwrite the y dataframe to the same hive table some_table
y.write.mode(SaveMode.Overwrite).saveAsTable().insertInto("some_table")
Then I am getting the error
org.apache.spark.sql.AnalysisException: Cannot insert overwrite into table that is also being read from
I tried creating an insert sql statement and firing it using sqlContext.sql() but it too gave me the same error.
Is there any way I can bypass this error? I need to insert the records back to the same table.
Hi I tried doing as suggested , but still getting the same error .
val x = sqlContext.sql("select * from incremental.test2")
val y = x.limit(5)
y.registerTempTable("temp_table")
val dy = sqlContext.table("temp_table")
dy.write.mode("overwrite").insertInto("incremental.test2")
scala> dy.write.mode("overwrite").insertInto("incremental.test2")
org.apache.spark.sql.AnalysisException: Cannot insert overwrite into table that is also being read from.;
You should first save your DataFrame y
in a temporary table
y.write.mode("overwrite").saveAsTable("temp_table")
Then you can overwrite rows in your target table
val dy = sqlContext.table("temp_table")
dy.write.mode("overwrite").insertInto("some_table")
Actually you can also use checkpointing to achieve this. Since it breaks data lineage, Spark is not able to detect that you are reading and overwriting in the same table:
sqlContext.sparkContext.setCheckpointDir(checkpointDir)
val ds = sqlContext.sql("select * from some_table").checkpoint()
ds.write.mode("overwrite").saveAsTable("some_table")
You should first save your DataFrame y
like a parquet file:
y.write.parquet("temp_table")
After you load this like:
val parquetFile = sqlContext.read.parquet("temp_table")
And finish you insert your data in your table
parquetFile.write.insertInto("some_table")
In context to Spark 2.2
- This error means that our process is reading from same table and writing to same table.
- Normally, this should work as process writes to directory .hiveStaging...
- This error occurs in case of saveAsTable method, as it overwrites entire table instead of individual partitions.
- This error should not occur with insertInto method, as it overwrites partitions not the table.
- A reason why this happening is because Hive table has following Spark TBLProperties in its definition. This problem will solve for insertInto method if you remove following Spark TBLProperties -
'spark.sql.partitionProvider' 'spark.sql.sources.provider'
'spark.sql.sources.schema.numPartCols
'spark.sql.sources.schema.numParts' 'spark.sql.sources.schema.part.0'
'spark.sql.sources.schema.part.1' 'spark.sql.sources.schema.part.2'
'spark.sql.sources.schema.partCol.0'
'spark.sql.sources.schema.partCol.1'
https://querydb.blogspot.com/2019/07/read-from-hive-table-and-write-back-to.html
Read the data from hive table in spark:
val hconfig = new org.apache.hadoop.conf.Configuration()
org.apache.hive.hcatalog.mapreduce.HCatInputFormat.setInput(hconfig , "dbname", "tablename")
val inputFormat = (new HCatInputFormat).asInstanceOf[InputFormat[WritableComparable[_],HCatRecord]].getClass
val data = sc.newAPIHadoopRDD(hconfig,inputFormat,classOf[WritableComparable[_]],classOf[HCatRecord])