When using PCA in sklearn, it's easy to get out the components:
from sklearn import decomposition
pca = decomposition.PCA(n_components=n_components)
pca_data = pca.fit(input_data)
pca_components = pca.components_
But I can't for the life of me figure out how to get the components out of LDA, as there is no components_ attribute. Is there a similar attribute in sklearn lda?
In the case of PCA, the documentation is clear. The pca.components_
are the eigenvectors.
In the case of LDA, we need the lda.scalings_
attribute.
Visual example using iris data and sklearn:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
iris = datasets.load_iris()
X = iris.data
y = iris.target
#In general it is a good idea to scale the data
scaler = StandardScaler()
scaler.fit(X)
X=scaler.transform(X)
lda = LinearDiscriminantAnalysis()
lda.fit(X,y)
x_new = lda.transform(X)
Verify that the lda.scalings_ are the eigenvectors:
print(lda.scalings_)
print(lda.transform(np.identity(4)))
[[-0.67614337 0.0271192 ]
[-0.66890811 0.93115101]
[ 3.84228173 -1.63586613]
[ 2.17067434 2.13428251]]
[[-0.67614337 0.0271192 ]
[-0.66890811 0.93115101]
[ 3.84228173 -1.63586613]
[ 2.17067434 2.13428251]]
Additionally here is a useful function to plot the biplot and verify visually:
def myplot(score,coeff,labels=None):
xs = score[:,0]
ys = score[:,1]
n = coeff.shape[0]
plt.scatter(xs ,ys, c = y) #without scaling
for i in range(n):
plt.arrow(0, 0, coeff[i,0], coeff[i,1],color = 'r',alpha = 0.5)
if labels is None:
plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, "Var"+str(i+1), color = 'g', ha = 'center', va = 'center')
else:
plt.text(coeff[i,0]* 1.15, coeff[i,1] * 1.15, labels[i], color = 'g', ha = 'center', va = 'center')
plt.xlabel("LD{}".format(1))
plt.ylabel("LD{}".format(2))
plt.grid()
#Call the function.
myplot(x_new[:,0:2], lda.scalings_)
plt.show()
Results
My reading of the code is that the coef_
attribute is used to weight each of the components when scoring a sample's features against the different classes. scaling
is the eigenvector and xbar_
is the mean. In the spirit of UTSL, here's the source for the decision function:
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/lda.py#L188
In PCA, the transform operation uses self.components_.T
(see the code):
X_transformed = np.dot(X, self.components_.T)
In LDA, the transform operation uses self.scalings_
(see the code):
X_new = np.dot(X, self.scalings_)
Note the .T
which transposes the array in the PCA, and not in LDA:
- PCA:
components_ : array, shape (n_components, n_features)
- LDA:
scalings_ : array, shape (n_features, n_classes - 1)