I posted earlier with a problem regarding the same program but received no answers. I've since corrected the issue I was experiencing at that point, only to face a new problem.
Basically I am auto correcting stereo image pairs for rotation and translation using an uncalibrated approach. I use feature detection algorithms such as SURF to find points in two images, a left and right stereo image pair, and then using SURF again I match the points between the two images. I then need to use these matched points to find the fundamental matrix which I can use to correct the images.
My issue is this. My matching points are stored in a single vector of descriptor matches, which is then filtered for outliers. findFundamentalMat takes as input two separate arrays of matching points. I don't know how to convert from my vector to my two separate arrays.
cout << "< Matching descriptors..." << endl;
vector<DMatch> filteredMatches;
crossCheckMatching( descriptorMatcher, descriptors1, descriptors2, filteredMatches, 1 );
cout << filteredMatches.size() << " matches" << endl << ">" << endl;
The vector is created.
void crossCheckMatching( Ptr<DescriptorMatcher>& descriptorMatcher,
const Mat& descriptors1, const Mat& descriptors2,
vector<DMatch>& filteredMatches12, int knn=1 )
{
filteredMatches12.clear();
vector<vector<DMatch> > matches12, matches21;
descriptorMatcher->knnMatch( descriptors1, descriptors2, matches12, knn );
descriptorMatcher->knnMatch( descriptors2, descriptors1, matches21, knn );
for( size_t m = 0; m < matches12.size(); m++ )
{
bool findCrossCheck = false;
for( size_t fk = 0; fk < matches12[m].size(); fk++ )
{
DMatch forward = matches12[m][fk];
for( size_t bk = 0; bk < matches21[forward.trainIdx].size(); bk++ )
{
DMatch backward = matches21[forward.trainIdx][bk];
if( backward.trainIdx == forward.queryIdx )
{
filteredMatches12.push_back(forward);
findCrossCheck = true;
break;
}
}
if( findCrossCheck ) break;
}
}
}
The matches are cross checked and stored within filteredMatches.
cout << "< Computing homography (RANSAC)..." << endl;
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs);
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs);
H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold );
cout << ">" << endl;
The homography is found based on a threshold which is set at run time in the command prompt.
//Mat drawImg;
if( !H12.empty() ) // filter outliers
{
vector<char> matchesMask( filteredMatches.size(), 0 );
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs);
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs);
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12);
for( size_t i1 = 0; i1 < points1.size(); i1++ )
{
if( norm(points2[i1] - points1t.at<Point2f>((int)i1,0)) < 4 ) // inlier
matchesMask[i1] = 1;
}
/* draw inliers
drawMatches( leftImg, keypoints1, rightImg, keypoints2, filteredMatches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask, 2 ); */
}
The matches are further filtered to remove outliers.
...and then what? How do I split what's left into two Mat's of matching points to use in findFundamentalMat?
EDIT
I have now used my mask to make a finalMatches vector as such (this replaces the final filtering procedure above):
Mat drawImg;
if( !H12.empty() ) // filter outliers
{
size_t i1;
vector<char> matchesMask( filteredMatches.size(), 0 );
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs);
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs);
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12);
for( i1 = 0; i1 < points1.size(); i1++ )
{
if( norm(points2[i1] - points1t.at<Point2f>((int)i1,0)) < 4 ) // inlier
matchesMask[i1] = 1;
}
for( i1 = 0; i1 < filteredMatches.size(); i1++ )
{
if ( matchesMask[i1] == 1 )
finalMatches.push_back(filteredMatches[i1]);
}
namedWindow("matches", 1);
// draw inliers
drawMatches( leftImg, keypoints1, rightImg, keypoints2, filteredMatches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask, 2 );
imshow("matches", drawImg);
}
However I still do not know how to split my finalMatches DMatch vector into the Mat arrays which I need to feed into findFundamentalMat, please help!!!
EDIT
Working (sort of) solution:
Mat drawImg;
vector<Point2f> finalPoints1;
vector<Point2f> finalPoints2;
if( !H12.empty() ) // filter outliers
{
size_t i, idx;
vector<char> matchesMask( filteredMatches.size(), 0 );
vector<Point2f> points1; KeyPoint::convert(keypoints1, points1, queryIdxs);
vector<Point2f> points2; KeyPoint::convert(keypoints2, points2, trainIdxs);
Mat points1t; perspectiveTransform(Mat(points1), points1t, H12);
for( i = 0; i < points1.size(); i++ )
{
if( norm(points2[i] - points1t.at<Point2f>((int)i,0)) < 4 ) // inlier
matchesMask[i] = 1;
}
for ( idx = 0; idx < filteredMatches.size(); idx++)
{
if ( matchesMask[idx] == 1 ) {
finalPoints1.push_back(keypoints1[filteredMatches[idx].queryIdx].pt);
finalPoints2.push_back(keypoints2[filteredMatches[idx].trainIdx].pt);
}
}
namedWindow("matches", 0);
// draw inliers
drawMatches( leftImg, keypoints1, rightImg, keypoints2, filteredMatches, drawImg, CV_RGB(0, 255, 0), CV_RGB(0, 0, 255), matchesMask, 2 );
imshow("matches", drawImg);
}
And then I feed finalPoints1 and finalPoints2 into findFundamentalMat as Mat's. Now my only problem is that my output is not remotely as expected, the images are all screwed up :-/