Is time complexity O(n^2)
or O (n(logn)^2)
better?
I know that when we simplify it, it becomes
O(n) vs O((logn)^2)
and logn
< n
, but what about logn^2
?
Is time complexity O(n^2)
or O (n(logn)^2)
better?
I know that when we simplify it, it becomes
O(n) vs O((logn)^2)
and logn
< n
, but what about logn^2
?
n is only less than (log n)2 for values of n less than 0.49...
So in general (log n)2 is better for large n...
But since these O(something)-notations always leave out constant factors, in your case it might not be possible to say for sure which algorithm is better...
Here's a graph:
(The blue line is n and the green line is (log n)2)
Notice, how the difference for small values of n isn't so big and might easily be dwarfed by the constant factors not included in the Big-O notation.
But for large n, (log n)2 wins hands down:
For each constant k
asymptotically log(n)^k < n
.
Proof is simple, do log on both sides of the equation, and you get:
log(log(n))*k < log(n)
It is easy to see that asymptotically, this is correct.
Semantic note: Assuming here log(n)^k == log(n) * log(n) * ... * log(n) (k times)
and NOT log(log(log(...log(n)))..) (k times)
as it is sometimes also used.
O(n^2) vs. O(n*log(n)^2)
<=> O(n) vs. O(log(n)^2) (divide by n)
<=> O(sqrt(n)) vs. O(log(n)) (square root)
<=> polynomial vs. logarithmic
Logarithmic wins.
(Log n)^2 is better because if you do a variable change n by exp m, then m^2 is better than exp m
(logn)^2
is also < n
.
Take an example:
n = 5
log n = 0.6989....
(log n)^ 2 = 0.4885..
You can see, (long n)^2 is further reduced.
Even if you take any bigger value of n e.g. 100,000,000 , then
log n = 9
(log n)^ 2 = 81
which is far less than n
.
O(n(logn)^2) is better (faster) for large n!
take log from both sides:
Log(n^2)=2log(n)
Log(n(logn)^2)=Log(n)+2log(Log(n))=Log(n)+2log(Log(n))
lim n--> infinity [(Log(n)+2log(Log(n)))/2log(n)/]=0.5 (use l'Hôpital's rule)(http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule)]