可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
The RDD has been created in the format Array[Array[String]]
and has the following values:
val rdd : Array[Array[String]] = Array(
Array("4580056797", "0", "2015-07-29 10:38:42", "0", "1", "1"),
Array("4580056797", "0", "2015-07-29 10:38:43", "0", "1", "1"))
I want to create a dataFrame with the schema :
val schemaString = "callId oCallId callTime duration calltype swId"
Next steps:
scala> val rowRDD = rdd.map(p => Array(p(0), p(1), p(2),p(3),p(4),p(5).trim))
rowRDD: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[14] at map at <console>:39
scala> val calDF = sqlContext.createDataFrame(rowRDD, schema)
Gives the following error:
console:45: error: overloaded method value createDataFrame with alternatives:
(rdd: org.apache.spark.api.java.JavaRDD[_],beanClass: Class[_])org.apache.spark.sql.DataFrame <and>
(rdd: org.apache.spark.rdd.RDD[_],beanClass: Class[_])org.apache.spark.sql.DataFrame <and>
(rowRDD: org.apache.spark.api.java.JavaRDD[org.apache.spark.sql.Row],schema: org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame <and>
(rowRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row],schema: org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame
cannot be applied to (org.apache.spark.rdd.RDD[Array[String]],
org.apache.spark.sql.types.StructType)
val calDF = sqlContext.createDataFrame(rowRDD, schema)
回答1:
Just paste into a spark-shell
:
val a =
Array(
Array("4580056797", "0", "2015-07-29 10:38:42", "0", "1", "1"),
Array("4580056797", "0", "2015-07-29 10:38:42", "0", "1", "1"))
val rdd = sc.makeRDD(a)
case class X(callId: String, oCallId: String,
callTime: String, duration: String, calltype: String, swId: String)
Then map()
over the RDD to create instances of the case class, and then create the DataFrame using toDF()
:
scala> val df = rdd.map {
case Array(s0, s1, s2, s3, s4, s5) => X(s0, s1, s2, s3, s4, s5) }.toDF()
df: org.apache.spark.sql.DataFrame =
[callId: string, oCallId: string, callTime: string,
duration: string, calltype: string, swId: string]
This infers the schema from the case class.
Then you can proceed with:
scala> df.printSchema()
root
|-- callId: string (nullable = true)
|-- oCallId: string (nullable = true)
|-- callTime: string (nullable = true)
|-- duration: string (nullable = true)
|-- calltype: string (nullable = true)
|-- swId: string (nullable = true)
scala> df.show()
+----------+-------+-------------------+--------+--------+----+
| callId|oCallId| callTime|duration|calltype|swId|
+----------+-------+-------------------+--------+--------+----+
|4580056797| 0|2015-07-29 10:38:42| 0| 1| 1|
|4580056797| 0|2015-07-29 10:38:42| 0| 1| 1|
+----------+-------+-------------------+--------+--------+----+
If you want to use toDF()
in a normal program (not in the spark-shell
), make sure (quoted from here):
- To
import sqlContext.implicits._
right after creating the SQLContext
- Define the case class outside of the method using
toDF()
回答2:
You need to convert first you Array
into Row
and then define schema. I made assumption that most of your fields are Long
val rdd: RDD[Array[String]] = ???
val rows: RDD[Row] = rdd map {
case Array(callId, oCallId, callTime, duration, swId) =>
Row(callId.toLong, oCallId.toLong, callTime, duration.toLong, swId.toLong)
}
object schema {
val callId = StructField("callId", LongType)
val oCallId = StructField("oCallId", StringType)
val callTime = StructField("callTime", StringType)
val duration = StructField("duration", LongType)
val swId = StructField("swId", LongType)
val struct = StructType(Array(callId, oCallId, callTime, duration, swId))
}
sqlContext.createDataFrame(rows, schema.struct)
回答3:
Using spark 1.6.1
and scala 2.10
I got the same error error: overloaded method value createDataFrame with alternatives:
For me, gotcha was the signature in createDataFrame
, I was trying to use the val rdd : List[Row]
, but it failed
because java.util.List[org.apache.spark.sql.Row]
and scala.collection.immutable.List[org.apache.spark.sql.Row]
are NOT the same.
The working solution I've found is I would convert val rdd : Array[Array[String]]
into RDD[Row]
via List[Array[String]]
. I find this is the closest to what's in the documentation
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.{StructType,StructField,StringType};
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val rdd_original : Array[Array[String]] = Array(
Array("4580056797", "0", "2015-07-29 10:38:42", "0", "1", "1"),
Array("4580056797", "0", "2015-07-29 10:38:42", "0", "1", "1"))
val rdd : List[Array[String]] = rdd_original.toList
val schemaString = "callId oCallId callTime duration calltype swId"
// Generate the schema based on the string of schema
val schema =
StructType(
schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))
// Convert records of the RDD to Rows.
val rowRDD = rdd.map(p => Row(p: _*)) // using splat is easier
// val rowRDD = rdd.map(p => Row(p(0), p(1), p(2), p(3), p(4), p(5))) // this also works
val df = sqlContext.createDataFrame(sc.parallelize(rowRDD:List[Row]), schema)
df.show
回答4:
I assume that your schema
is, like in the Spark Guide, as follow:
val schema =
StructType(
schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))
If you look at the signature of the createDataFrame, here is the one that accepts a StructType as 2nd argument (for Scala)
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame
Creates a DataFrame from an RDD containing Rows using the given
schema.
So it accepts as 1st argument a RDD[Row]
. What you have in rowRDD
is a RDD[Array[String]]
so there is a mismatch.
Do you need an RDD[Array[String]]
?
Otherwise you can use the following to create your dataframe:
val rowRDD = rdd.map(p => Row(p(0), p(1), p(2),p(3),p(4),p(5).trim))