可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I am trying to create a matrix of random numbers, but my solution is too long and looks ugly
random_matrix = [[random.random() for e in range(2)] for e in range(3)]
this looks ok, but in my implementation it is
weights_h = [[random.random() for e in range(len(inputs[0]))] for e in range(hiden_neurons)]
which is extremely unreadable and does not fit on one line.
回答1:
Take a look at numpy.random.rand:
Docstring: rand(d0, d1, ..., dn)
Random values in a given shape.
Create an array of the given shape and propagate it with random
samples from a uniform distribution over [0, 1)
.
>>> import numpy as np
>>> np.random.rand(2,3)
array([[ 0.22568268, 0.0053246 , 0.41282024],
[ 0.68824936, 0.68086462, 0.6854153 ]])
回答2:
You can drop the range(len())
:
weights_h = [[random.random() for e in inputs[0]] for e in range(hiden_neurons)]
But really, you should probably use numpy.
In [9]: numpy.random.random((3, 3))
Out[9]:
array([[ 0.37052381, 0.03463207, 0.10669077],
[ 0.05862909, 0.8515325 , 0.79809676],
[ 0.43203632, 0.54633635, 0.09076408]])
回答3:
use np.random.randint() as numpy.random.random_integers() is deprecated
random_matrix = numpy.random.randint(min_val,max_val,(<num_rows>,<num_cols>))
回答4:
Looks like you are doing a Python implementation of the Coursera Machine Learning Neural Network exercise. Here's what I did for randInitializeWeights(L_in, L_out)
#get a random array of floats between 0 and 1 as Pavel mentioned
W = numpy.random.random((L_out, L_in +1))
#normalize so that it spans a range of twice epsilon
W = W * 2 * epsilon
#shift so that mean is at zero
W = W - epsilon
回答5:
First, create numpy
array then convert it into matrix
. See the code below:
import numpy
B = numpy.random.random((3, 4)) #its ndArray
C = numpy.matrix(B)# it is matrix
print(type(B))
print(type(C))
print(C)
回答6:
random_matrix = [[random.random for j in range(collumns)] for i in range(rows)
for i in range(rows):
print random_matrix[i]
回答7:
x = np.int_(np.random.rand(10) * 10)
For random numbers out of 10. For out of 20 we have to multiply by 20.
回答8:
When you say "a matrix of random numbers", you can use numpy as Pavel https://stackoverflow.com/a/15451997/6169225 mentioned above, in this case I'm assuming to you it is irrelevant what distribution these (pseudo) random numbers adhere to.
However, if you require a particular distribution (I imagine you are interested in the uniform distribution), numpy.random
has very useful methods for you. For example, let's say you want a 3x2 matrix with a pseudo random uniform distribution bounded by [low,high]. You can do this like so:
numpy.random.uniform(low,high,(3,2))
Note, you can replace uniform
by any number of distributions supported by this library.
Further reading: https://docs.scipy.org/doc/numpy/reference/routines.random.html
回答9:
An answer using map-reduce:-
map(lambda x: map(lambda y: ran(),range(len(inputs[0]))),range(hiden_neurons))