How do I interpret the TensorFlow output for building and executing computational graphs on GPGPUs?
Given the following command that executes an arbitrary tensorflow script using the python API.
python3 tensorflow_test.py > out
The first part stream_executor
seems like its loading dependencies.
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally
What is a NUMA
node?
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:900] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
I assume this is when it finds the available GPU
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties:
name: Tesla K40c
major: 3 minor: 5 memoryClockRate (GHz) 0.745
pciBusID 0000:01:00.0
Total memory: 11.25GiB
Free memory: 11.15GiB
Some gpu initialization? what is DMA?
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:755] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Tesla K40c, pci bus id: 0000:01:00.0)
Why does it throw an error E
?
E tensorflow/stream_executor/cuda/cuda_driver.cc:932] failed to allocate 11.15G (11976531968 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY
Great answer to what the pool_allocator
does: https://stackoverflow.com/a/35166985/4233809
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 3160 get requests, put_count=2958 evicted_count=1000 eviction_rate=0.338066 and unsatisfied allocation rate=0.412025
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 100 to 110
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 1743 get requests, put_count=1970 evicted_count=1000 eviction_rate=0.507614 and unsatisfied allocation rate=0.456684
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 256 to 281
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 1986 get requests, put_count=2519 evicted_count=1000 eviction_rate=0.396983 and unsatisfied allocation rate=0.264854
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 655 to 720
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 28728 get requests, put_count=28680 evicted_count=1000 eviction_rate=0.0348675 and unsatisfied allocation rate=0.0418407
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 1694 to 1863