I am new to Haskell but understand how Monad Transformers can be used.
Yet, I still have difficulties grabbing their claimed advantage over passing parameters to function calls.
Based on the wiki Monad Transformers Explained, we basically have a Config Object defined as
data Config = Config Foo Bar Baz
and to pass it around, instead of writing functions with this signature
client_func :: Config -> IO ()
we use a ReaderT Monad Transformer and change the signature to
client_func :: ReaderT Config IO ()
pulling the Config is then just a call to ask
.
The function call changes from client_func c
to runReaderT client_func c
Fine.
But why does this make my application simpler ?
1- I suspect Monad Transformers have an interest when you stitch a lot of functions/modules together to form an application. But this is where is my understanding stops. Could someone please shed some light?
2- I could not find any documentation on how you write a large modular application in Haskell, where modules expose some form of API and hide their implementations, as well as (partly) hide their own States and Environments from the other modules. Any pointers please ?
(Edit: Real World Haskell states that ".. this approach [Monad Transformers] ... scales to bigger programs.", but there is no clear example demonstrating that claim)
EDIT Following Chris Taylor Answer Below
Chris perfectly explains why encapsulating Config, State,etc... in a Transformer Monad provides two benefits:
- It prevents a higher level function from having to maintain in its type signature all the parameters required by the (sub)functions it calls but not required for its own use (see the
getUserInput
function)
- and as a consequence makes higher level functions more resilient to a change of the content of the Transformer Monad (say you want to add a
Writer
to it to provide Logging in a lower level function)
This comes at the cost of changing the signature of all functions so that they run "in" the Transformer Monad.
So question 1 is fully covered. Thank you Chris.
Question 2 is now answered in this SO post
Let's say that we're writing a program that needs some configuration information in the following form:
data Config = C { logFile :: FileName }
One way to write the program is to explicitly pass the configuration around between functions. It would be nice if we only had to pass it to the functions that use it explicitly, but sadly we're not sure if a function might need to call another function that uses the configuration, so we're forced to pass it as a parameter everywhere (indeed, it tends to be the low-level functions that need to use the configuration, which forces us to pass it to all the high-level functions as well).
Let's write the program like that, and then we'll re-write it using the Reader
monad and see what benefit we get.
Option 1. Explicit configuration passing
We end up with something like this:
readLog :: Config -> IO String
readLog (C logFile) = readFile logFile
writeLog :: Config -> String -> IO ()
writeLog (C logFile) message = do x <- readFile logFile
writeFile logFile $ x ++ message
getUserInput :: Config -> IO String
getUserInput config = do input <- getLine
writeLog config $ "Input: " ++ input
return input
runProgram :: Config -> IO ()
runProgram config = do input <- getUserInput config
putStrLn $ "You wrote: " ++ input
Notice that in the high level functions we have to pass config around all the time.
Option 2. Reader monad
An alternative is to rewrite using the Reader
monad. This complicates the low level functions a bit:
type Program = ReaderT Config IO
readLog :: Program String
readLog = do C logFile <- ask
readFile logFile
writeLog :: String -> Program ()
writeLog message = do C logFile <- ask
x <- readFile logFile
writeFile logFile $ x ++ message
But as our reward, the high level functions are simpler, because we never need to refer to the configuration file.
getUserInput :: Program String
getUserInput = do input <- getLine
writeLog $ "Input: " ++ input
return input
runProgram :: Program ()
runProgram = do input <- getUserInput
putStrLn $ "You wrote: " ++ input
Taking it further
We could re-write the type signatures of getUserInput and runProgram to be
getUserInput :: (MonadReader Config m, MonadIO m) => m String
runProgram :: (MonadReader Config m, MonadIO m) => m ()
which gives us a lot of flexibility for later, if we decide that we want to change the underlying Program
type for any reason. For example, if we want to add modifiable state to our program we could redefine
data ProgramState = PS Int Int Int
type Program a = StateT ProgramState (ReaderT Config IO) a
and we don't have to modify getUserInput
or runProgram
at all - they'll continue to work fine.
N.B. I haven't type checked this post, let alone tried to run it. There may be errors!