The whole dataset describes a module (or cluster if you prefer).
In order to reproduce the example, the dataset is available at: https://www.dropbox.com/s/y1905suwnlib510/example_dataset.txt?dl=0
(54kb file)
You can read as:
test_example <- read.table(file='example_dataset.txt')
What I would like to have in my plot is this
On the plot, the x-axis is my Timepoints column, and the y-axis are the columns on the dataset, except for the last 3 columns. Then I used facet_wrap() to group by the ConditionID column.
This is exactly what I want, but the way I achieved this was with the following code:
plot <- ggplot(dataset, aes(x=Timepoints))
plot <- plot + geom_line(aes(y=dataset[,1],colour = dataset$InModule))
plot <- plot + geom_line(aes(y=dataset[,2],colour = dataset$InModule))
plot <- plot + geom_line(aes(y=dataset[,3],colour = dataset$InModule))
plot <- plot + geom_line(aes(y=dataset[,4],colour = dataset$InModule))
plot <- plot + geom_line(aes(y=dataset[,5],colour = dataset$InModule))
plot <- plot + geom_line(aes(y=dataset[,6],colour = dataset$InModule))
plot <- plot + geom_line(aes(y=dataset[,7],colour = dataset$InModule))
plot <- plot + geom_line(aes(y=dataset[,8],colour = dataset$InModule))
...
As you can see it is not very automated. I thought about putting in a loop, like
columns <- dim(dataset)[2] - 3
for (i in seq(1:columns))
{
plot <- plot + geom_line(aes(y=dataset[,i],colour = dataset$InModule))
}
(plot <- plot + facet_wrap( ~ ConditionID, ncol=6) )
That doesn't work. I found this topic Use for loop to plot multiple lines in single plot with ggplot2 which corresponds to my problem. I tried the solution given with the melt() function.
The problem is that when I use melt on my dataset, I lose information of the Timepoints column to plot as my x-axis. This is how I did:
data_melted <- dataset
as.character(data_melted$Timepoints)
dataset_melted <- melt(data_melted)
I tried using aggregate
aggdata <-aggregate(dataset, by=list(dataset$ConditionID), FUN=length)
Now with aggdata at least I have the information on how many Timepoints for each ConditionID I have, but I don't know how to proceed from here and combine this on ggplot.
Can anyone suggest me an approach. I know I could use the ugly solution of creating new datasets on a loop with rbind(also given in that link), but I don't wanna do that, as it sounds really inefficient. I want to learn the right way.
Thanks