To my understanding from tf.nn.conv2d doc for SAME convolution (no matter the stride) The first dot product should be centered around (0,0) though as you can see bellow when the stride is odd the first dot product seems to be centered around (1,1): in this toy example
input shape is [5,5,1]
filer shape is [3,3,1,1]
res = tf.nn.conv2d(X, F, strides=[1,x,x,1], padding='SAME')
stride 1 result:
array([[ 1.49573362, 2.65084887, 2.96818447, 3.04787111, 1.89275599],
[ 3.1941781 , 4.47312069, 4.10260868, 4.13415051, 2.85520792],
[ 2.65490007, 3.41439581, 2.93415952, 3.65811515, 2.89861989],
[ 2.22547054, 2.98453856, 2.89428496, 3.29111433, 2.53204632],
[ 0.52702606, 1.16226625, 1.75986075, 2.20483446, 1.56959426]], dtype=float32)
stride 2 result:
array([[ 1.49573362, 2.96818447, 1.89275599],
[ 2.65490007, 2.93415952, 2.89861989],
[ 0.52702606, 1.75986075, 1.56959426]], dtype=float32)
stride 3 result:
array([[ 4.47312069, 2.85520792],
[ 1.16226625, 1.56959426]], dtype=float32)
Is this a bug or am I missing something?