I have a dataframe and the Date column has two different types of date formats going on.
eg. 1983-11-10 00:00:00 and 10/11/1983
I want them all to be the same type, how can I iterate through the Date column of my dataframe and convert the dates to one format?
I believe you need parameter dayfirst=True
in to_datetime
:
df = pd.DataFrame({'Date': {0: '1983-11-10 00:00:00', 1: '10/11/1983'}})
print (df)
Date
0 1983-11-10 00:00:00
1 10/11/1983
df['Date'] = pd.to_datetime(df.Date, dayfirst=True)
print (df)
Date
0 1983-11-10
1 1983-11-10
because:
df['Date'] = pd.to_datetime(df.Date)
print (df)
Date
0 1983-11-10
1 1983-10-11
Or you can specify both formats and then use combine_first
:
d1 = pd.to_datetime(df.Date, format='%Y-%m-%d %H:%M:%S', errors='coerce')
d2 = pd.to_datetime(df.Date, format='%d/%m/%Y', errors='coerce')
df['Date'] = d1.combine_first(d2)
print (df)
Date
0 1983-11-10
1 1983-11-10
General solution for multiple formats:
from functools import reduce
def convert_formats_to_datetimes(col, formats):
out = [pd.to_datetime(col, format=x, errors='coerce') for x in formats]
return reduce(lambda l,r: pd.Series.combine_first(l,r), out)
formats = ['%Y-%m-%d %H:%M:%S', '%d/%m/%Y']
df['Date'] = df['Date'].pipe(convert_formats_to_datetimes, formats)
print (df)
Date
0 1983-11-10
1 1983-11-10
I want them all to be the same type, how can I iterate through the
Date column of my dataframe and convert the dates to one format?
Your input data is ambiguous: is 10 / 11
10th November or 11th October? You need to specify logic to determine which is appropriate. A function is useful if you with to try multiple date formats sequentially:
def date_apply_formats(s, form_lst):
s = pd.to_datetime(s, format=form_lst[0], errors='coerce')
for form in form_lst[1:]:
s = s.fillna(pd.to_datetime(s, format=form, errors='coerce'))
return s
df['Date'] = date_apply_formats(df['Date'], ['%Y-%m-%d %H:%M:%S', '%d/%m/%Y'])
Priority is given to the first item in form_lst
. The solution is extendible to an arbitrary number of provided formats.
Input date is
NSECODE Date Close
1 NSE500 20000103 1291.5500
2 NSE500 20000104 1335.4500
3 NSE500 20000105 1303.8000
history_nseindex_df["Date"] = pd.to_datetime(history_nseindex_df["Date"])
history_nseindex_df["Date"] = history_nseindex_df["Date"].dt.strftime("%Y-%m-%d")
ouput is now
NSECode Date Close
1 NSE500 2000-01-03 1291.5500
2 NSE500 2000-01-04 1335.4500
3 NSE500 2000-01-05 1303.8000