Given some data x
:
from pandas_datareader.data import DataReader as dr
x = np.squeeze(dr('DTWEXB', 'fred').dropna().values)
I want to calculate another vector y
as follows:
Where alpha equals 0.03, in this case.
Can I do this with scipy.lfilter?
. Similar question here, but in that case the starting value of the result is 0 and that is throwing something off.
My attempt:
from scipy.signal import lfilter
a = 0.03
b = 1 - a
y0 = x[0]
y = lfilter([a], [y0, -b], x)
The results should be:
true_y = np.empty(len(x))
for k in range(0, len(true_y)):
if k == 0:
true_y[k] = x[0]
else:
true_y[k] = a*x[k] + b*true_y[k-1]
print(true_y)
[ 101.1818 101.176862 101.16819314 ..., 120.9813121 120.92484874
120.85786628]
The correct arguments for the coefficients of the transfer function are [a]
and [1, -b]
.
To handle your desired initial condition, you can create the correct initial state for the filter using scipy.signal.lfiltic
:
zi = lfiltic([a], [1, -b], y=[x[0]])
Then call lfilter
with the zi
argument:
y, zo = lfilter([a], [1, -b], x, zi=zi)
Here are an x
, y
(computed using lfilter
with zi
), and your true_y
:
In [37]: x
Out[37]: array([ 3., 1., 2., 0., -1., 2.])
In [38]: y
Out[38]:
array([ 3. , 2.94 , 2.9118 , 2.824446 , 2.70971262,
2.68842124])
In [39]: true_y
Out[39]:
array([ 3. , 2.94 , 2.9118 , 2.824446 , 2.70971262,
2.68842124])
Take the z-transform of your filter, that gives you the values for the numerator b
and denominator a
:
alpha
y(z) = ------------------ x(z)
1 - (1-alpha) z^-1
So you run
import scipy.signal
x[0] /= alpha
y = scipy.signal.lfilter([alpha], [1, - 1 + alpha], x)
Which yields
array([ 101.1818 , 101.176862 , 101.16819314, ..., 120.9813121 ,
120.92484874, 120.85786628])
Note I have scaled x[0]
to account for the initial condition you wanted.