Shiny: calculate cumsum based on dygraphs' Ran

2020-04-19 05:43发布

问题:

I'm building a shiny app where I want to plot a dataset with one of the variables being a cumulative sum of another variable. The latter needs to be re-calculated every time the start date of dygraphs' dyRangeSelector changes. Below is a basic code without cumsum calculations. Commented out code is what I tried, with no success.

library(shinydashboard)
library(stringr)
library(zoo)
library(dplyr)
library(dygraphs)

ui <-dashboardPage(
  dashboardHeader(),
  dashboardSidebar(),
  dashboardBody(
    uiOutput("Ui1")
  )
)

server <- function(input, output, session) {


  output$Ui1 <- renderUI({

    # date range observer 

    # values <- reactiveValues()
    # 
    # observeEvent(input$plot1_date_window, {
    #   from <- as.Date(str_sub(input$plot1_date_window[[1]], 1, 10))
    # })

    ## dygraphs plot 
    output$plot1 <- renderDygraph({

      m_df <- data.frame(date=as.Date(zoo::as.yearmon(time(mdeaths))), Y=as.matrix(mdeaths))

      # input_data <- m_df %>% 
      #   filter(date >= values$from) %>% 
      #   mutate(cumY = cumsum(Y)) 

      input_xts <- xts(select(m_df, -date), 
                       order.by = m_df$date)
                       #select(input_data, -date),
                       #order.by = input_data$date)


      p <- dygraph(input_xts) %>% 
        dyRangeSelector()

      p  
    })

    ## outputs
    dygraphOutput('plot1')
  })


}

shinyApp(ui, server)

UPDATE

I modified @Pork Chop's answer to be able to plot the cumulative values with other metrics on one graph, but I'm not even able to display the plot now:

library(xts)
library(shiny)
library(shinydashboard)
library(dygraphs)

ui <- dashboardPage(
  dashboardHeader(),
  dashboardSidebar(),
  dashboardBody(
    dygraphOutput('plot1'),
    textOutput("cumsum1")
  )
)

server <- function(input, output, session) {

  m_df <- data.frame(date=as.Date(zoo::as.yearmon(time(mdeaths))), Y=as.matrix(mdeaths))
  subdata <- reactive({
    cumsum(m_df$Y[m_df$date >= as.Date(input$plot1_date_window[1]) & m_df$date <= as.Date(input$plot1_date_window[2])])
  })

  output$plot1 <- renderDygraph({
    req(input$plot1_date_window)
    input_xts <- xts(select(m_df, -date), order.by = m_df$date)
    subdata_xts <- xts(select(subdata(), - date), order.by = subdata()$date)
    final_xts <- cbind(input_xts, subdata_xts)

    dygraph(final_xts) %>% 
      dyRangeSelector()
  })

  output$cumsum1 <- renderText({
    req(input$plot1_date_window)
    subdata <- cumsum(m_df$Y[m_df$date >= as.Date(input$plot1_date_window[1]) & m_df$date <= as.Date(input$plot1_date_window[2])])
    subdata
  })

}

shinyApp(ui, server)

回答1:

The problem with your updated code is, that you didn't keep the date information. Also once you start rendering a plot based on a change of the plot itself (recursion) it gets a little tricky. You have to make sure that re-rendering the plot doesn't trigger the rendering again or you'll end up in a loop. That's why I set retainDateWindow = TRUE. Besides that you don't want the plot to re-render right away after the first change of the slider that's why I debounced the subdata.

Nevertheless, using dygraphs you still have the problem, that when you add cumsum as a series your plot for dyRangeSelector is changed (y maximum of all series). Please see the following code:

library(xts)
library(shiny)
library(shinydashboard)
library(dygraphs)
library(dplyr)

ui <- dashboardPage(
  dashboardHeader(),
  dashboardSidebar(),
  dashboardBody(
    dygraphOutput('plot1')
  )
)

server <- function(input, output, session) {

  m_df <- data.frame(date=as.Date(zoo::as.yearmon(time(mdeaths))), Y=as.matrix(mdeaths))

  subdata <- reactive({
    if(!is.null(input$plot1_date_window)){
      subdata <- m_df[m_df$date >= as.Date(input$plot1_date_window[1]) & m_df$date <= as.Date(input$plot1_date_window[2]), ]
      subdata$cumsum <- cumsum(subdata$Y)
      subdata$Y <- NULL
    } else {
      subdata <- NULL
    }

    return(subdata)
  })

  subdata_d <- subdata %>% debounce(100)

  output$plot1 <- renderDygraph({
    input_xts <- xts(select(m_df, -date), order.by = m_df$date)
    if(is.null(subdata_d())){
      final_xts <- input_xts
    } else {

      subdata_xts <- xts(select(subdata_d(), - date), order.by = subdata_d()$date)
      final_xts <- cbind(input_xts, subdata_xts)
    }

    p <- dygraph(final_xts) %>% dySeries(name="Y") %>%
      dyRangeSelector(retainDateWindow = TRUE)

    if("cumsum" %in% names(final_xts)){
      p <- dySeries(p, name="cumsum", axis = "y2")
    }

    p
  })

}

shinyApp(ui, server)

Just as @PorkChop mentioned I'd recommend multiple outputs for this scenario. Furthermore, I'd suggest to have a look at library(plotly) and it's event_data().



回答2:

This should do the job, I think it is cleaner to have separate outputs for your dashboard

library(xts)
library(shiny)
library(shinydashboard)
library(dygraphs)

ui <- dashboardPage(
  dashboardHeader(),
  dashboardSidebar(),
  dashboardBody(
    dygraphOutput('plot1'),
    textOutput("cumsum1")
  )
)

server <- function(input, output, session) {

  m_df <- data.frame(date=as.Date(zoo::as.yearmon(time(mdeaths))), Y=as.matrix(mdeaths))

  output$plot1 <- renderDygraph({
    input_xts <- xts(select(m_df, -date), order.by = m_df$date)

    dygraph(input_xts) %>% 
      dyRangeSelector()
  })

  output$cumsum1 <- renderText({
    req(input$plot1_date_window)
    subdata <- cumsum(m_df$Y[m_df$date >= as.Date(input$plot1_date_window[1]) & m_df$date <= as.Date(input$plot1_date_window[2])])
    subdata
  })

}

shinyApp(ui, server)