How to use pre-trained embedding with tf.feature_column.embedding_column
.
I used pre_trained
embedding in tf.feature_column.embedding_column
. But it doesn't work. Error is
The error is :
ValueError: initializer must be callable if specified. Embedding of column_name: itemx
Here's my code:
weight, vocab_size, emb_size = _create_pretrained_emb_from_txt(FLAGS.vocab,
FLAGS.pre_emb)
W = tf.Variable(tf.constant(0.0, shape=[vocab_size, emb_size]),
trainable=False, name="W")
embedding_placeholder = tf.placeholder(tf.float32, [vocab_size, emb_size])
embedding_init = W.assign(embedding_placeholder)
sess = tf.Session()
sess.run(embedding_init, feed_dict={embedding_placeholder: weight})
itemx_vocab = tf.feature_column.categorical_column_with_vocabulary_file(
key='itemx',
vocabulary_file=FLAGS.vocabx)
itemx_emb = tf.feature_column.embedding_column(itemx_vocab,
dimension=emb_size,
initializer=W,
trainable=False)
I have tried initializer = lambda w:W. like this:
itemx_emb = tf.feature_column.embedding_column(itemx_vocab,
dimension=emb_size,
initializer=lambda w:W,
trainable=False)
it reports the error:
TypeError: () got an unexpected keyword argument 'dtype'