Concatenate dataframes with multi-index in pandas

2020-04-16 18:55发布

问题:

I have two dataframes df1 and df2:

In [56]: df1.head()
Out[56]: 
                     col7                col8                col9          
                   alpha0        D0    alpha0        D0    alpha0        D0
F35_HC_531d.dat  1.103999  1.103999  1.364399  1.358938  3.171808  1.946894
F35_HC_532d.dat  0.000000  0.000000  1.636934  1.635594  4.359431  2.362530
F35_HC_533d.dat  0.826599  0.826599  1.463956  1.390134  3.860629  2.199387
F35_HC_534d.dat  1.055350  1.020555  3.112200  2.498257  3.394307  2.090668
F52_HC_472d.dat  3.808008  2.912733  3.594062  2.336720  3.027449  2.216112

In [62]: df2.head()
Out[62]: 
                   col7           col8              col9       
                 alpha1 alpha2  alpha1    alpha2  alpha1 alpha2
filename                                                       
F35_HC_532d.dat  1.0850  2.413  0.7914  6.072000  0.8418  5.328
M48_HC_551d.dat  0.7029  4.713  0.7309  2.922000  0.7823  3.546
M24_HC_458d.dat  0.7207  5.850  0.6772  5.699000  0.7135  5.620
M48_HC_552d.dat  0.7179  4.783  0.6481  4.131999  0.7010  3.408
M40_HC_506d.dat  0.7602  2.912  0.8420  5.690000  0.8354  1.910

I want to concat these two dataframes. Notice that the outer column names are same for both so I only want to see 4 sub-columns in a new dataframe. I tried using concat as:

df = pd.concat([df1, df2], axis = 1, levels = 0)

But this produces a dataframe with columns named from col7 to col9 twice (so the dataframe has 6 outer columns). How can I put all the columns in level 1 under same outer column names?

回答1:

You can add sort_index for sorting columns:

df = pd.concat([df1, df2], axis = 1, levels=0).sort_index(axis=1)
print (df)
                     col7                               col8            \
                       D0    alpha0  alpha1 alpha2        D0    alpha0   
F35_HC_531d.dat  1.103999  1.103999     NaN    NaN  1.358938  1.364399   
F35_HC_532d.dat  0.000000  0.000000  1.0850  2.413  1.635594  1.636934   
F35_HC_533d.dat  0.826599  0.826599     NaN    NaN  1.390134  1.463956   
F35_HC_534d.dat  1.020555  1.055350     NaN    NaN  2.498257  3.112200   
F52_HC_472d.dat  2.912733  3.808008     NaN    NaN  2.336720  3.594062   
M24_HC_458d.dat       NaN       NaN  0.7207  5.850       NaN       NaN   
M40_HC_506d.dat       NaN       NaN  0.7602  2.912       NaN       NaN   
M48_HC_551d.dat       NaN       NaN  0.7029  4.713       NaN       NaN   
M48_HC_552d.dat       NaN       NaN  0.7179  4.783       NaN       NaN   

                                       col9                           
                 alpha1    alpha2        D0    alpha0  alpha1 alpha2  
F35_HC_531d.dat     NaN       NaN  1.946894  3.171808     NaN    NaN  
F35_HC_532d.dat  0.7914  6.072000  2.362530  4.359431  0.8418  5.328  
F35_HC_533d.dat     NaN       NaN  2.199387  3.860629     NaN    NaN  
F35_HC_534d.dat     NaN       NaN  2.090668  3.394307     NaN    NaN  
F52_HC_472d.dat     NaN       NaN  2.216112  3.027449     NaN    NaN  
M24_HC_458d.dat  0.6772  5.699000       NaN       NaN  0.7135  5.620  
M40_HC_506d.dat  0.8420  5.690000       NaN       NaN  0.8354  1.910  
M48_HC_551d.dat  0.7309  2.922000       NaN       NaN  0.7823  3.546  
M48_HC_552d.dat  0.6481  4.131999       NaN       NaN  0.7010  3.408  


回答2:

You can use join with parameter how='outer'

df1.join(df2, how='outer').sort_index(1)