I have to compare coordinates in order to get the distance. Therefor i load the data with sc.textFile() and make a cartesian product. There are about 2.000.000 lines in the textfile thus 2.000.000 x 2.000.000 to be compared coordinates.
I tested the code with about 2.000 coordinates and it worked fine within seconds. But using the big file it seems to stop at a certain point and i don't know why. The code looks as follows:
def concat(x,y):
if(isinstance(y, list)&(isinstance(x,list))):
return x + y
if(isinstance(x,list)&isinstance(y,tuple)):
return x + [y]
if(isinstance(x,tuple)&isinstance(y,list)):
return [x] + y
else: return [x,y]
def haversian_dist(tuple):
lat1 = float(tuple[0][0])
lat2 = float(tuple[1][0])
lon1 = float(tuple[0][2])
lon2 = float(tuple[1][2])
p = 0.017453292519943295
a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
print(tuple[0][1])
return (int(float(tuple[0][1])), (int(float(tuple[1][1])),12742 * asin(sqrt(a))))
def sort_val(tuple):
dtype = [("globalid", int),("distance",float)]
a = np.array(tuple[1], dtype=dtype)
sorted_mins = np.sort(a, order="distance",kind="mergesort")
return (tuple[0], sorted_mins)
def calc_matrix(sc, path, rangeval, savepath, name):
data = sc.textFile(path)
data = data.map(lambda x: x.split(";"))
data = data.repartition(100).cache()
data.collect()
matrix = data.cartesian(data)
values = matrix.map(haversian_dist)
values = values.reduceByKey(concat)
values = values.map(sort_val)
values = values.map(lambda x: (x[0], x[1][1:int(rangeval)].tolist()))
values = values.map(lambda x: (x[0], [y[0] for y in x[1]]))
dicti = values.collectAsMap()
hp.save_pickle(dicti, savepath, name)
Even a file with about 15.000 entries doesn't work. I know the cartesian causes O(n^2) runtime. But shouldn't spark handle this? Or is something wrong? The only starting point is a error message, but i don't know if it relates to the actual problem:
16/08/06 22:21:12 WARN TaskSetManager: Lost task 15.0 in stage 1.0 (TID 16, hlb0004): java.net.SocketException: Daten?bergabe unterbrochen (broken pipe)
at java.net.SocketOutputStream.socketWrite0(Native Method)
at java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:109)
at java.net.SocketOutputStream.write(SocketOutputStream.java:153)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:122)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at java.io.FilterOutputStream.write(FilterOutputStream.java:97)
at org.apache.spark.api.python.PythonRDD$.org$apache$spark$api$python$PythonRDD$$write$1(PythonRDD.scala:440)
at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:452)
at org.apache.spark.api.python.PythonRDD$$anonfun$writeIteratorToStream$1.apply(PythonRDD.scala:452)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at org.apache.spark.api.python.PythonRDD$.writeIteratorToStream(PythonRDD.scala:452)
at org.apache.spark.api.python.PythonRunner$WriterThread$$anonfun$run$3.apply(PythonRDD.scala:280)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1741)
at org.apache.spark.api.python.PythonRunner$WriterThread.run(PythonRDD.scala:239)
16/08/06 22:21:12 INFO TaskSetManager: Starting task 15.1 in stage 1.0 (TID 17, hlb0004, partition 15,PROCESS_LOCAL, 2408 bytes)
16/08/06 22:21:12 WARN TaskSetManager: Lost task 7.0 in stage 1.0 (TID 8, hlb0004): java.net.SocketException: Connection reset
at java.net.SocketInputStream.read(SocketInputStream.java:209)
at java.net.SocketInputStream.read(SocketInputStream.java:141)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:139)
at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:207)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:125)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:342)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)