So, while answering some other question I stumbled upon the necessity of computing the median of 5. Now, there's a similar question in another language, but I want a Scala algorithm for it, and I'm not sure I'm happy with mine.
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
回答1:
Here's an immutable Scala version that has the minimum number of compares (6) and doesn't look too ugly:
def med5(five: (Int,Int,Int,Int,Int)) = {
// Return a sorted tuple (one compare)
def order(a: Int, b: Int) = if (a<b) (a,b) else (b,a)
// Given two self-sorted pairs, pick the 2nd of 4 (two compares)
def pairs(p: (Int,Int), q: (Int,Int)) = {
(if (p._1 < q._1) order(p._2,q._1) else order(q._2,p._1))._1
}
// Strategy is to throw away smallest or second smallest, leaving two self-sorted pairs
val ltwo = order(five._1,five._2)
val rtwo = order(five._4,five._5)
if (ltwo._1 < rtwo._1) pairs(rtwo,order(ltwo._2,five._3))
else pairs(ltwo,order(rtwo._2,five._3))
}
Edit: As requested by Daniel, here's a modification to work with all sizes, and in arrays so it should be efficient. I can't make it pretty, so efficiency is the next best thing. (>200M medians/sec with a pre-allocated array of 5, which is slightly more than 100x faster than Daniel's version, and 8x faster than my immutable version above (for lengths of 5)).
def med5b(five: Array[Int]): Int = {
def order2(a: Array[Int], i: Int, j: Int) = {
if (a(i)>a(j)) { val t = a(i); a(i) = a(j); a(j) = t }
}
def pairs(a: Array[Int], i: Int, j: Int, k: Int, l: Int) = {
if (a(i)<a(k)) { order2(a,j,k); a(j) }
else { order2(a,i,l); a(i) }
}
if (five.length < 2) return five(0)
order2(five,0,1)
if (five.length < 4) return (
if (five.length==2 || five(2) < five(0)) five(0)
else if (five(2) > five(1)) five(1)
else five(2)
)
order2(five,2,3)
if (five.length < 5) pairs(five,0,1,2,3)
else if (five(0) < five(2)) { order2(five,1,4); pairs(five,1,4,2,3) }
else { order2(five,3,4); pairs(five,0,1,3,4) }
}
回答2:
Jeez, way to over-think it, guys.
def med5(a : Int, b: Int, c : Int, d : Int, e : Int) =
List(a, b, c, d, e).sort(_ > _)(2)
回答3:
As suggested, here's my own algorithm:
def medianUpTo5(arr: Array[Double]): Double = {
def oneAndOrderedPair(a: Double, smaller: Double, bigger: Double): Double =
if (bigger < a) bigger
else if (a < smaller) smaller else a
def partialOrder(a: Double, b: Double, c: Double, d: Double) = {
val (s1, b1) = if (a < b) (a, b) else (b, a)
val (s2, b2) = if (c < d) (c, d) else (d, c)
(s1, b1, s2, b2)
}
def medianOf4(a: Double, b: Double, c: Double, d: Double): Double = {
val (s1, b1, s2, b2) = partialOrder(a, b, c, d)
if (b1 < b2) oneAndOrderedPair(s2, s1, b1)
else oneAndOrderedPair(s1, s2, b2)
}
arr match {
case Array(a) => a
case Array(a, b) => a min b
case Array(a, b, c) =>
if (a < b) oneAndOrderedPair(c, a, b)
else oneAndOrderedPair(c, b, a)
case Array(a, b, c, d) => medianOf4(a, b, c, d)
case Array(a, b, c, d, e) =>
val (s1, b1, s2, b2) = partialOrder(a, b, c, d)
if (s1 < s2) medianOf4(e, b1, s2, b2)
else medianOf4(e, b2, s1, b1)
}
}