Suppose I have an __array_interface__
dictionary and I would like to create a numpy view of this data from the dictionary itself. For example:
buff = {'shape': (3, 3), 'data': (140546686381536, False), 'typestr': '<f8'}
view = np.array(buff, copy=False)
However, this does not work as np.array
searches for either the buffer or array interface as attributes. The simple workaround could be the following:
class numpy_holder(object):
pass
holder = numpy_holder()
holder.__array_interface__ = buff
view = np.array(holder, copy=False)
This seems a bit roundabout. Am I missing a straightforward way to do this?
correction - with the right 'data' value your holder
works in np.array
:
np.array
is definitely not going to work since it expects an iterable, some things like a list of lists, and parses the individual values.
There is a low level constructor, np.ndarray
that takes a buffer parameter. And a np.frombuffer
.
But my impression is that x.__array_interface__['data'][0]
is a integer representation of the data buffer location, but not directly a pointer to the buffer. I've only used it to verify that a view shares the same databuffer, not to construct anything from it.
np.lib.stride_tricks.as_strided
uses __array_interface__
for default stride and shape data, but gets the data from an array, not the __array_interface__
dictionary.
===========
An example of ndarray
with a .data
attribute:
In [303]: res
Out[303]:
array([[ 0, 20, 50, 30],
[ 0, 50, 50, 0],
[ 0, 0, 75, 25]])
In [304]: res.__array_interface__
Out[304]:
{'data': (178919136, False),
'descr': [('', '<i4')],
'shape': (3, 4),
'strides': None,
'typestr': '<i4',
'version': 3}
In [305]: res.data
Out[305]: <memory at 0xb13ef72c>
In [306]: np.ndarray(buffer=res.data, shape=(4,3),dtype=int)
Out[306]:
array([[ 0, 20, 50],
[30, 0, 50],
[50, 0, 0],
[ 0, 75, 25]])
In [324]: np.frombuffer(res.data,dtype=int)
Out[324]: array([ 0, 20, 50, 30, 0, 50, 50, 0, 0, 0, 75, 25])
Both of these arrays are views.
OK, with your holder
class, I can make the same thing, using this res.data
as the data buffer. Your class creates an object exposing the array interface
.
In [379]: holder=numpy_holder()
In [380]: buff={'data':res.data, 'shape':(4,3), 'typestr':'<i4'}
In [381]: holder.__array_interface__ = buff
In [382]: np.array(holder, copy=False)
Out[382]:
array([[ 0, 20, 50],
[30, 0, 50],
[50, 0, 0],
[ 0, 75, 25]])
Here's another approach:
import numpy as np
def arr_from_ptr(pointer, typestr, shape, copy=False,
read_only_flag=False):
"""Generates numpy array from memory address
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html
Parameters
----------
pointer : int
Memory address
typestr : str
A string providing the basic type of the homogenous array The
basic string format consists of 3 parts: a character
describing the byteorder of the data (<: little-endian, >:
big-endian, |: not-relevant), a character code giving the
basic type of the array, and an integer providing the number
of bytes the type uses.
The basic type character codes are:
- t Bit field (following integer gives the number of bits in the bit field).
- b Boolean (integer type where all values are only True or False)
- i Integer
- u Unsigned integer
- f Floating point
- c Complex floating point
- m Timedelta
- M Datetime
- O Object (i.e. the memory contains a pointer to PyObject)
- S String (fixed-length sequence of char)
- U Unicode (fixed-length sequence of Py_UNICODE)
- V Other (void * – each item is a fixed-size chunk of memory)
See https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html#__array_interface__
shape : tuple
Shape of array.
copy : bool
Copy array. Default False
read_only_flag : bool
Read only array. Default False.
"""
buff = {'data': (pointer, read_only_flag),
'typestr': typestr,
'shape': shape}
class numpy_holder():
pass
holder = numpy_holder()
holder.__array_interface__ = buff
return np.array(holder, copy=copy)
Usage:
# create array
arr = np.ones(10)
# grab pointer from array
pointer, read_only_flag = arr.__array_interface__['data']
# constrct numpy array from an int pointer
arr_out = arr_from_ptr(pointer, '<f8', (10,))
# verify it's the same data
arr[0] = 0
assert np.allclose(arr, arr_out)