I am not able to import resnet from keras.applicat

2020-04-02 07:47发布

问题:

I'm unable to import this module

import keras.applications.resnet

ModuleNotFoundError
in () ----> 1 import keras.applications.resnet

ModuleNotFoundError: No module named 'keras.applications.resnet'


keras resnet link

回答1:

Keras team hasn't included resnet, resnet_v2 and resnext in the current module, they will be added from Keras 2.2.5, as mentioned here.

For a workaround, you can use keras_applications module directly to import all ResNet, ResNetV2 and ResNeXt models, as given below

from keras_applications.resnet import ResNet50

Or if you just want to use ResNet50

from keras.applications.resnet50 import ResNet50

Alternatively, you can always build from source as mentioned here.



回答2:

Found a workaround to use ResNeXt in Keras 2.2.4 here.

ResNeXt50() function needs 4 more arguments: backend, layers, models and utils.

import keras
from keras_applications.resnext import ResNeXt50

model = ResNeXt50(weights='imagenet',
                  backend=keras.backend,
                  layers=keras.layers,
                  models=keras.models,
                  utils=keras.utils)


回答3:

In Keras there are multiple flavours of ResNet, you will have to specify the version of ResNet that you want e.g. You wish to load the ResNet50.

Use

from keras.applications import ResNet50

Edit 2 This is the list you get when you use dir() command on applications

['DenseNet121', 'DenseNet169', 'DenseNet201', 'InceptionResNetV2', 'InceptionV3', 'MobileNet', 'MobileNetV2', 'NASNetLarge', 'NASNetMobile', 'ResNet50', 'VGG16', 'VGG19', 'Xception', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'absolute_import', 'backend', 'densenet', 'division', 'inception_resnet_v2', 'inception_v3', 'keras_applications', 'keras_modules_injection', 'layers', 'mobilenet', 'mobilenet_v2', 'models', 'nasnet', 'print_function', 'resnet50', 'utils', 'vgg16', 'vgg19', 'xception'], the models visible here can be laoded like this, There are some models like ResNet101 missing here, let me see if I can come up with a way to fix this.

Edit Proof that this works too

To see all the available versions of the Resnet models, visit https://keras.io/applications/#resnet