I have a QTableWidget in editable mode in which user puts in integer input , how can I generate a list of data entered in this table so as to perform operations on it , here is my manual code for that:
def dataframe_generation_from_table(self,table):
number_of_rows = table.rowCount()
number_of_columns = table.columnCount()
tmp_df = pd.DataFrame({ 'Date' : [] , str(self.final_lvl_of_analysis) :[], 'Value': []})
for i in range(0,number_of_rows):
for j in range(0,number_of_columns):
tmp_item = table.item(i,j)
tmp_df2 = pd.DataFrame( { 'Date' : [pd.to_datetime(table.horizontalHeaderItem(j).data())] , str(self.final_lvl_of_analysis) :[ str(table.verticalHeaderItem(i).data())], 'Value': [float(tmp_item.data(0))]})
print tmp_df2
tmp_df.update(tmp_df2, join = 'left', overwrite = False)
return tmp_df
Also , I am using the following code for QTableWidget generation:
self.pd_table = QtGui.QTableWidget(self.groupBox_19)
self.pd_table.setObjectName(_fromUtf8("pd_table"))
self.pd_table.setColumnCount(0)
self.pd_table.setRowCount(0)
My specs are : pandas 0.18.1 , PyQt 4 and Python 2.7
I think you're overcomplicating it a little with the updates/joins. The simplest approach is to create the full-size DataFrame
first (filled with NaN
) and then assign the data to this:
def dataframe_generation_from_table(self,table):
number_of_rows = table.rowCount()
number_of_columns = table.columnCount()
tmp_df = pd.DataFrame(
columns=['Date', str(self.final_lvl_of_analysis), 'Value'], # Fill columnets
index=range(number_of_rows) # Fill rows
)
for i in range(number_of_rows):
for j in range(number_of_columns):
tmp_df.ix[i, j] = table.item(i, j).data()
return tmp_df
The above code assigns data to it's location by the numerical index, so position 1,1 in the QtTableWidget
will end up at 1,1 in the DataFrame
. This way you don't need to worry about the column headers when moving data. If you want to change the column names you can do that when creating the DataFrame
, changing the values passed into the columns=
parameter.
If you want to change a column to DateTime
format, you should be able to do this in a single operation after the loop with:
tmp_df['Date'] = pd.to_datetime( tmp_df['Date'] )
The change from .data()
to .text()
eliminated the ValueError
.
def saveFile(self):
df = pd.DataFrame()
savePath = QtGui.QFileDialog.getSaveFileName(None, "Blood Hound",
"Testing.csv", "CSV files (*.csv)")
rows = self.tableWidget.rowCount()
columns = self.tableWidget.columnCount()
for i in range(rows):
for j in range(columns):
df.loc[i, j] = str(self.tableWidget.item(i, j).text())
df.to_csv((savePath), header = None, index = 0)
# creates a new df from qtables dimensions,
# copies qtable (data & headers) to the df and returns the df
@staticmethod
def write_qtable_to_df(table):
col_count = table.columnCount()
row_count = table.rowCount()
headers = [str(table.horizontalHeaderItem(i).text()) for i in range(col_count)]
# df indexing is slow, so use lists
df_list = []
for row in range(row_count):
df_list2 = []
for col in range(col_count):
table_item = table.item(row,col)
df_list2.append('' if table_item is None else str(table_item.text()))
df_list.append(df_list2)
df = pandas.DataFrame(df_list, columns=headers)
return df