web scraping using httr give xml_nodeset error

2020-03-27 15:47发布

问题:

I try to reproduce web addresses for webscraping. It loop from given startDate to endDate, this is my code;

startDate <- as.Date("01-11-17", format="%d-%m-%y")
endDate <- as.Date("31-01-18",format="%d-%m-%y")
theDay <- startDate
while (theDay <= endDate)
{ 
  dy <- as.character(theDay, format="%d")
  month <- as.character(theDay, format = "%m")
  year <- as.character(theDay, format ="%Y")
  wyoming <- "http://weather.uwyo.edu/cgi-bin/sounding?region=seasia&TYPE=TEXT%3ALIST&YEAR="
  address <- paste0(wyoming,year,"&MONTH=",month,"&FROM=",dy,"00&T0=",dy,"00&STNM=48657")
  print(address)
 theDay = theDay + 1
} 

I don't understand html very well but I like how this code https://stackoverflow.com/a/52539658/7356308 turn the data into data frame which is simpler to work on later. It gathers the webpage response and extract the data into actual column names. Its work fine .. until I incorporate the looping task. Stating;

Error in wx_dat[[1]] : subscript out of bounds

Kindly advice on this... Thank you

library(httr)
library(rvest)
startDate <- as.Date("01-11-17", format="%d-%m-%y")
endDate <- as.Date("31-01-18",format="%d-%m-%y")

theDay <- startDate
while (theDay <= endDate)
{ 
  dy <- as.character(theDay, format="%d")
  month <- as.character(theDay, format = "%m")
  year <- as.character(theDay, format ="%Y")
  httr::GET(
    url = "http://weather.uwyo.edu/cgi-bin/sounding",
    query = list(
      region = "seasia",
      TYPE = "TEXT:list",
      YEAR = year,
      MONTH = month,
      FROM = paste0(dy,"00"), #is this the root of problem?
      STNM = "48657"
    )
  ) -> res

  #becoming html document
  httr::content(res, as="parsed") %>% html_nodes("pre")-> wx_dat
  #extract data
  html_text(wx_dat[[1]]) %>%           # turn the first <pre> node into text
    strsplit("\n") %>%                 # split it into lines
    unlist() %>%                       # turn it back into a character vector
    { col_names <<- .[3]; . } %>%      # pull out the column names
    .[-(1:5)] %>%                      # strip off the header
    paste0(collapse="\n") -> readings  # turn it back into a big text blob
  readr::read_table(readings, col_names = tolower(unlist(strsplit(trimws(col_names),"\ +"))))

  #data <- read_table(readings, col_names = tolower(unlist(strsplit(trimws(col_names),"\ +"))))
  #to write csv..
  print(theDay)
  theDay = theDay + 1
}

回答1:

I've encapsulated the function into a non-CRAN package. You can:

devtools::install_git("https://gitlab.com/hrbrmstr/unsound.git")

then:

library(unsound)
library(magick)
library(tidyverse)

startDate <- as.Date("01-11-17", format="%d-%m-%y")
endDate <- as.Date("31-01-18",format="%d-%m-%y")

# make a sequence
days <- seq(startDate, endDate, "1 day")

# apply the sequence — note that I am not going to hit the server >80x for 
# an example and *you* should add a Sys.sleep(5) before the call to 
# get_sounding_data() to be kind to their servers.
lapply(days[1:4], function(day) {
  get_sounding_data(
    region = "seasia",
    date = day,
    from_hr = "00",
    to_hr = "00",
    station_number = "48657"
  )
}) -> soundings_48657
## Warning message:
## In get_sounding_data(region = "seasia", date = day, from_hr = "00",  :
##   Can't get 48657 WMKD Kuantan Observations at 00Z 01 Nov 2017.

rbind_soundings(soundings_48657)
## # A tibble: 176 x 14
##    pres_hpa hght_m temp_c dwpt_c relh_pct mixr_g_kg drct_deg sknt_knot
##       <dbl>  <dbl>  <dbl>  <dbl>    <dbl>     <dbl>    <dbl>     <dbl>
##  1    1006.    16.   24.0   23.4      96.      18.4       0.        0.
##  2    1000.    70.   23.6   22.4      93.      17.4       0.        0.
##  3     993.   132.   23.2   21.5      90.      16.6      NA        NA 
##  4     981.   238.   24.6   21.6      83.      16.9      NA        NA 
##  5    1005.    16.   24.2   23.6      96.      18.6     190.        1.
##  6    1000.    62.   24.2   23.1      94.      18.2     210.        3.
##  7     991.   141.   24.0   22.9      94.      18.1     212.        6.
##  8     983.   213.   23.8   22.7      94.      18.0     213.        8.
##  9     973.   302.   23.3   22.0      92.      17.4     215.       11.
## 10     970.   329.   23.2   21.8      92.      17.3     215.       11.
## # ... with 166 more rows, and 6 more variables: thta_k <dbl>,
## #   thte_k <dbl>, thtv_k <dbl>, date <date>, from_hr <chr>, to_hr <chr>

I also added a function to retrieve the pre-generated maps:

get_sounding_map(
  station_number = "48657", 
  date = Sys.Date()-1, 
  map_type = "skewt", 
  map_format = "gif", 
  region = "seasia", 
  from_hr = "00", 
  to_hr = "00"
)



回答2:

It turns out that some days have no station data. O_o

Since you likely really just want to analyze this data vs slowly get to that point via SO interactions (which I wld not blame you for), let's wrap the previous httr call into a nice function:

#' Get Sounding data for a station via University of Wyoming web portal
#'
#' @md
#' @param region one of "`naconf`", "`samer`", "`pac`", "`nz`", "`ant`", "`np`",
#'        "`europe`", "`africa`", "`seasia`", "`mideast`" (which matches the
#'        values of the drop-down menu on the site)
#' @param date an ISO character string (e.g. `YYYY-mm-dd`) or a valid `Date` object
#' @param from_hr,to_hr one of `00` (or `0`), `12` or `all`; if `all` then both
#'        values will be set to `all`
#' @param station_number the station number
#' @return data frame
#' @export
get_sounding_data <- function(region = c("naconf", "samer", "pac", "nz", "ant",
                                         "np", "europe", "africa", "seasia", "mideast"),
                              date,
                              from_hr = c("00", "12", "all"),
                              to_hr = c("00", "12", "all"),
                              station_number) {

  # we use these pkgs (I removed the readr and dplyr dependencies)
  suppressPackageStartupMessages({
    require("xml2", quietly = TRUE)
    require("httr", quietly = TRUE)
    require("rvest", quietly = TRUE)
  })

  # validate region
  region <- match.arg(
    arg = region,
    choices = c(
      "naconf", "samer", "pac", "nz", "ant",
      "np", "europe", "africa", "seasia", "mideast"
    )
  )

  # this actually validates the date for us if it's a character string
  date <- as.Date(date)

  # get year and month
  year <- as.integer(format(date, "%Y"))
  stopifnot(year %in% 1973:as.integer(format(Sys.Date(), "%Y")))

  year <- as.character(year)
  month <- format(date, "%m")

  # we need these to translate day & *_hr to the param the app needs
  c(
    "0100", "0112", "0200", "0212", "0300", "0312", "0400", "0412",
    "0500", "0512", "0600", "0612", "0700", "0712", "0800", "0812",
    "0900", "0912", "1000", "1012", "1100", "1112", "1200", "1212",
    "1300", "1312", "1400", "1412", "1500", "1512", "1600", "1612",
    "1700", "1712", "1800", "1812", "1900", "1912", "2000", "2012",
    "2100", "2112", "2200", "2212", "2300", "2312", "2400", "2412",
    "2500", "2512", "2600", "2612", "2700", "2712", "2800", "2812",
    "2900", "2912", "3000", "3012", "3100", "3112"
  ) -> hr_vals

  c(
    "01/00Z", "01/12Z", "02/00Z", "02/12Z", "03/00Z", "03/12Z", "04/00Z",
    "04/12Z", "05/00Z", "05/12Z", "06/00Z", "06/12Z", "07/00Z", "07/12Z",
    "08/00Z", "08/12Z", "09/00Z", "09/12Z", "10/00Z", "10/12Z", "11/00Z",
    "11/12Z", "12/00Z", "12/12Z", "13/00Z", "13/12Z", "14/00Z", "14/12Z",
    "15/00Z", "15/12Z", "16/00Z", "16/12Z", "17/00Z", "17/12Z", "18/00Z",
    "18/12Z", "19/00Z", "19/12Z", "20/00Z", "20/12Z", "21/00Z", "21/12Z",
    "22/00Z", "22/12Z", "23/00Z", "23/12Z", "24/00Z", "24/12Z", "25/00Z",
    "25/12Z", "26/00Z", "26/12Z", "27/00Z", "27/12Z", "28/00Z", "28/12Z",
    "29/00Z", "29/12Z", "30/00Z", "30/12Z", "31/00Z", "31/12Z"
  ) -> hr_inputs

  hr_trans <- stats::setNames(hr_vals, hr_inputs)

  o_from_hr <- from_hr <- as.character(tolower(from_hr))
  o_to_hr <- to_hr <- as.character(tolower(to_hr))

  if ((from_hr == "all") || (to_hr == "all")) {
    from_hr <- to_hr <- "all"
  } else {

    from_hr <- hr_trans[sprintf("%s/%02dZ", format(date, "%d"), as.integer(from_hr))]
    match.arg(from_hr, hr_vals)

    to_hr <- hr_trans[sprintf("%s/%02dZ", format(date, "%d"), as.integer(to_hr))]
    match.arg(to_hr, hr_vals)

  }

  # clean up the station number if it was entered as a double
  station_number <- as.character(as.integer(station_number))

  # execute the API call
  httr::GET(
    url = "http://weather.uwyo.edu/cgi-bin/sounding",
    query = list(
      region = region,
      TYPE = "TEXT:LIST",
      YEAR = year,
      MONTH = sprintf("%02d", as.integer(month)),
      FROM = from_hr,
      TO = to_hr,
      STNM = station_number
    )
  ) -> res

  # check for super bad errors (that we can't handle nicely)
  httr::stop_for_status(res)

  # get the page content
  doc <- httr::content(res, as="text")

  # if the site reports no data, issue a warning and return an empty data frame
  if (grepl("Can't get", doc)) {
    doc <- xml2::read_html(doc)
    msg <- rvest::html_nodes(doc, "body")
    msg <- rvest::html_text(msg, trim=TRUE)
    msg <- gsub("\n\n+.*$", "", msg)
    warning(msg)
    return(data.frame(stringsAsFactors=FALSE))
  }

  # turn it into something we can parse
  doc <- xml2::read_html(doc)

  # get the metadata
  meta <- rvest::html_node(doc, "h2")
  meta <- rvest::html_text(meta, trim=TRUE)

  # get the table
  doc <- rvest::html_nodes(doc, "pre")[[1]]
  doc <- rvest::html_text(doc, trim=TRUE)
  doc <- strsplit(doc, "\n")[[1]]

  # extract the column names and make them really nice and informative
  col_names <- doc[2:3]
  gsub(
    "_+", "_",
    gsub(
      "[[:punct:]]", "_",
      gsub(
        "%", "pct", tolower(
          sprintf(
            "%s_%s",
            unlist((strsplit(trimws(col_names[1]), "[[:space:]]+"))),
            unlist((strsplit(trimws(col_names[2]), "[[:space:]]+")))
          )
        )
      )
    )
  ) -> col_names

  # parse the values correctly (this is better than read.table)
  con <- textConnection(doc[-c(1:4)])
  read.fwf(
    file = con,
    widths = rep(7, 11),
    header = FALSE,
    colClasses = rep("character", 11), # we'll convert them ourselves, tyvm
    stringsAsFactors=FALSE
  ) -> xdf

  # get rid of white space in each column
  xdf[] <- lapply(xdf, trimws)

  # turn them all numeric
  xdf[] <- suppressWarnings(lapply(xdf, as.numeric))

  # set our column names
  colnames(xdf) <- col_names

  # add the date and from/to hr as columns
  xdf$date <- date
  xdf$from_hr <- o_from_hr
  xdf$to_hr <- o_to_hr

  # this affords pretty-printing if you use the tidyverse
  class(xdf) <- c("tbl_df", "tbl", "data.frame")

  # add the metadata as an unobtrusive attribute
  attr(xdf, "meta") <- meta

  xdf

}

The above is liberally commented so I'm not going to explain it further.

Now we can do your iteration:

# get the start/end range
startDate <- as.Date("01-11-17", format="%d-%m-%y")
endDate <- as.Date("31-01-18",format="%d-%m-%y")

# make a sequence
days <- seq(startDate, endDate, "1 day")

# apply the sequence — note that I am not going to hit the server >80x for 
# an example and *you* should add a Sys.sleep(5) before the call to 
# get_sounding_data() to be kind to their servers.
lapply(days[1:4], function(day) {
  get_sounding_data(
    region = "seasia",
    date = day,
    from_hr = "00",
    to_hr = "00",
    station_number = "48657"
  )
}) -> soundings_48657

If a station had no data for a particular day there will be warnings about it so you can do this to check how many days are missing due to no data being present.

warnings()
## Warning message:
## In get_sounding_data(region = "seasia", date = day, from_hr = "00",  :
##   Can't get 48657 WMKD Kuantan Observations at 00Z 01 Nov 2017.

This is what we have and note that the first element is blank b/c there is no data for that day:

str(soundings_48657, 2)
## List of 4
##  $ :'data.frame': 0 obs. of  0 variables
##  $ :Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 4 obs. of  14 variables:
##   ..$ pres_hpa : num [1:4] 1006 1000 993 981
##   ..$ hght_m   : num [1:4] 16 70 132 238
##   ..$ temp_c   : num [1:4] 24 23.6 23.2 24.6
##   ..$ dwpt_c   : num [1:4] 23.4 22.4 21.5 21.6
##   ..$ relh_pct : num [1:4] 96 93 90 83
##   ..$ mixr_g_kg: num [1:4] 18.4 17.4 16.6 16.9
##   ..$ drct_deg : num [1:4] 0 0 NA NA
##   ..$ sknt_knot: num [1:4] 0 0 NA NA
##   ..$ thta_k   : num [1:4] 297 297 297 299
##   ..$ thte_k   : num [1:4] 350 347 345 349
##   ..$ thtv_k   : num [1:4] 300 300 300 302
##   ..$ date     : Date[1:4], format: "2017-11-02" "2017-11-02" "2017-11-02" "2017-11-02"
##   ..$ from_hr  : chr [1:4] "00" "00" "00" "00"
##   ..$ to_hr    : chr [1:4] "00" "00" "00" "00"
##   ..- attr(*, "meta")= chr "48657 WMKD Kuantan Observations at 00Z 02 Nov 2017"
##  $ :Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 83 obs. of  14 variables:
##   ..$ pres_hpa : num [1:83] 1005 1000 991 983 973 ...
##   ..$ hght_m   : num [1:83] 16 62 141 213 302 329 466 595 745 802 ...
##   ..$ temp_c   : num [1:83] 24.2 24.2 24 23.8 23.3 23.2 23.4 22.7 21.8 21.4 ...
##   ..$ dwpt_c   : num [1:83] 23.6 23.1 22.9 22.7 22 21.8 22 21.3 20.4 19.7 ...
##   ..$ relh_pct : num [1:83] 96 94 94 94 92 92 92 92 92 90 ...
##   ..$ mixr_g_kg: num [1:83] 18.6 18.2 18.1 18 17.4 ...
##   ..$ drct_deg : num [1:83] 190 210 212 213 215 215 212 210 210 210 ...
##   ..$ sknt_knot: num [1:83] 1 3 6 8 11 11 14 16 15 15 ...
##   ..$ thta_k   : num [1:83] 297 297 298 298 299 ...
##   ..$ thte_k   : num [1:83] 351 350 351 351 350 ...
##   ..$ thtv_k   : num [1:83] 300 301 301 302 302 ...
##   ..$ date     : Date[1:83], format: "2017-11-03" "2017-11-03" "2017-11-03" "2017-11-03" ...
##   ..$ from_hr  : chr [1:83] "00" "00" "00" "00" ...
##   ..$ to_hr    : chr [1:83] "00" "00" "00" "00" ...
##   ..- attr(*, "meta")= chr "48657 WMKD Kuantan Observations at 00Z 03 Nov 2017"
##  $ :Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 89 obs. of  14 variables:
##   ..$ pres_hpa : num [1:89] 1005 1001 1000 993 987 ...
##   ..$ hght_m   : num [1:89] 16 54 63 125 178 304 322 597 747 898 ...
##   ..$ temp_c   : num [1:89] 24.8 24.4 24.4 23.6 25 24.6 24.6 22.9 22 20.9 ...
##   ..$ dwpt_c   : num [1:89] 24.2 23.4 23.2 21.8 22.6 21.4 21.2 20.4 19.9 19.1 ...
##   ..$ relh_pct : num [1:89] 96 94 93 90 87 82 81 86 88 89 ...
##   ..$ mixr_g_kg: num [1:89] 19.4 18.5 18.3 16.9 17.9 ...
##   ..$ drct_deg : num [1:89] 0 264 240 237 235 230 229 210 205 200 ...
##   ..$ sknt_knot: num [1:89] 0 2 2 4 5 9 10 19 20 19 ...
##   ..$ thta_k   : num [1:89] 298 298 298 297 299 ...
##   ..$ thte_k   : num [1:89] 354 351 351 346 352 ...
##   ..$ thtv_k   : num [1:89] 301 301 301 300 302 ...
##   ..$ date     : Date[1:89], format: "2017-11-04" "2017-11-04" "2017-11-04" "2017-11-04" ...
##   ..$ from_hr  : chr [1:89] "00" "00" "00" "00" ...
##   ..$ to_hr    : chr [1:89] "00" "00" "00" "00" ...
##   ..- attr(*, "meta")= chr "48657 WMKD Kuantan Observations at 00Z 04 Nov 2017"

Now, we have a list of data frames (some empty) that we need to turn into one, big, tidy data frame. We'll remove the empty ones and compact them all together:

length_not_zero <- function(x) length(x) > 0

Reduce(
  rbind.data.frame,
  Filter(length_not_zero, soundings_48657)
)
## # A tibble: 176 x 14
##    pres_hpa hght_m temp_c dwpt_c relh_pct mixr_g_kg drct_deg sknt_knot thta_k thte_k thtv_k
##       <dbl>  <dbl>  <dbl>  <dbl>    <dbl>     <dbl>    <dbl>     <dbl>  <dbl>  <dbl>  <dbl>
##  1     1006     16   24     23.4       96      18.4        0         0   297.   350.   300.
##  2     1000     70   23.6   22.4       93      17.4        0         0   297.   347.   300.
##  3      993    132   23.2   21.5       90      16.6       NA        NA   297.   345.   300.
##  4      981    238   24.6   21.6       83      16.9       NA        NA   299.   349.   302.
##  5     1005     16   24.2   23.6       96      18.6      190         1   297.   351    300.
##  6     1000     62   24.2   23.1       94      18.2      210         3   297.   350.   301.
##  7      991    141   24     22.9       94      18.1      212         6   298.   351.   301.
##  8      983    213   23.8   22.7       94      18.0      213         8   298.   351.   302.
##  9      973    302   23.3   22         92      17.4      215        11   299.   350.   302.
## 10      970    329   23.2   21.8       92      17.3      215        11   299.   350.   302 
## # ... with 166 more rows, and 3 more variables: date <date>, from_hr <chr>, to_hr <chr>

note that ^^ had date/from/to in it (look at the bottom line) so you can go crazy with a tidy analysis.

I have not tested this with an all parameter for from_hr/to_hr so it might break with that. If so, just ping and I'll see what I can do.



标签: r xml-parsing