With d3.js we can achieve eased time out of normalized time t, typically in the range [0,1]
For example:
d3.easeCubic(0.25) = 0.0625
How can we reverse that, how can we find x given known y ?
d3.easeCubic(X) = 0.0625,
X ???
The answer here is cubic root, but still.
The problem is in reusability, ease function can change to d3.easeExpIn
, or `d3.easeCircleOut, or any other, do you need to invent reverse functions on your own, or are they hidden anywhere ?
Firstly, your math is wrong. d3.easeCubic(0.25)
will give you 0.0625
:
var easy = d3.easeCubic(0.25);
console.log(easy);
<script src="https://d3js.org/d3.v4.min.js"></script>
Now, back to your question:
How can we reverse that, how can we find x given known y?
There is no native solution, but we can create our own function to find X given a known Y. The problem, of course, is that we have to invert the math for each specific easing... But, since you asked about d3.easeCubic
, which is the same of d3.easeCubicInOut
, let's try to create an inverted function for that particular easing.
First step, let's have a look at the source code:
export function cubicInOut(t) {
return ((t *= 2) <= 1 ? t * t * t : (t -= 2) * t * t + 2) / 2;
}
You can easily see that this is the correct function, giving us the same value as the first snippet:
function cubicInOut(t) {
return ((t *= 2) <= 1 ? t * t * t : (t -= 2) * t * t + 2) / 2;
}
console.log(cubicInOut(0.25))
Now, let's try to invert it.
The math here is somehow complicated, but for values less than 1, here is the function:
function inverseEaseCubic(t){
return Math.cbrt(t * 2) / 2;
}
And here is the demo. We pass 0.0625
to the function, and it returns 0.25
:
function inverseEaseCubic(t){
return Math.cbrt(t * 2) / 2;
}
console.log(inverseEaseCubic(0.0625))
If you want to deal with numbers bigger than 1, this is the complete function:
function InverseEaseCubic(t){
return t <= 1 ? Math.cbrt(t * 2) / 2 : (Math.cbrt(2 * t - 2) + 2) / 2;
}
PS: In his comment, @altocumulus just reminded us that, sometimes, it's even impossible to find the value. Here is a very simple example. Suppose this function:
function exponentiation(a){
return a*a;
}
Now imagine that, when called with an unknown argument, the function returned 4
. What's the argument? Can we find out? Impossible to determine, because second degree equations, like this one, have 2 roots:
console.log(exponentiation(2))//returns 4
console.log(exponentiation(-2))//also returns 4
I used the @Gerardo Furtado answer but the inverse function didn't work well so I wrote another
function cubicInOut(t) {
return ((t *= 2) <= 1 ? t * t * t : (t -= 2) * t * t + 2) / 2;
}
function inverseEaseCubic(x) {
return x < .5 ? Math.cbrt(x / 4) : (2 - Math.cbrt(2 - 2 * x)) / 2;
}
console.log(inverseEaseCubic(cubicInOut(1)) === 1);
console.log(inverseEaseCubic(cubicInOut(0.6)) === 0.6);
console.log(inverseEaseCubic(cubicInOut(0.4)) === 0.4);
console.log(inverseEaseCubic(cubicInOut(0.1)) === 0.1);
console.log(inverseEaseCubic(cubicInOut(0)) === 0);