可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I'm new with R. I need to generate a simple Frequency Table (as in books) with cumulative frequency and relative frequency.
So I want to generate from some simple data like
> x
[1] 17 17 17 17 17 17 17 17 16 16 16 16 16 18 18 18 10 12 17 17 17 17 17 17 17 17 16 16 16 16 16 18 18 18 10
[36] 12 15 19 20 22 20 19 19 19
a table like:
frequency cumulative relative
(9.99,11.7] 2 2 0.04545455
(11.7,13.4] 2 4 0.04545455
(13.4,15.1] 1 5 0.02272727
(15.1,16.9] 10 15 0.22727273
(16.9,18.6] 22 37 0.50000000
(18.6,20.3] 6 43 0.13636364
(20.3,22] 1 44 0.02272727
I know it should be simple, but I don't know how.
I got some results using this code:
factorx <- factor(cut(x, breaks=nclass.Sturges(x)))
as.matrix(table(factorx))
回答1:
You're close! There are a few functions that will make this easy for you, namely cumsum()
and prop.table()
. Here's how I'd probably put this together. I make some random data, but the point is the same:
#Fake data
x <- sample(10:20, 44, TRUE)
#Your code
factorx <- factor(cut(x, breaks=nclass.Sturges(x)))
#Tabulate and turn into data.frame
xout <- as.data.frame(table(factorx))
#Add cumFreq and proportions
xout <- transform(xout, cumFreq = cumsum(Freq), relative = prop.table(Freq))
#-----
factorx Freq cumFreq relative
1 (9.99,11.4] 11 11 0.25000000
2 (11.4,12.9] 3 14 0.06818182
3 (12.9,14.3] 11 25 0.25000000
4 (14.3,15.7] 2 27 0.04545455
5 (15.7,17.1] 6 33 0.13636364
6 (17.1,18.6] 3 36 0.06818182
7 (18.6,20] 8 44 0.18181818
回答2:
The base functions table
, cumsum
and prop.table
should get you there:
cbind( Freq=table(x), Cumul=cumsum(table(x)), relative=prop.table(table(x)))
Freq Cumul relative
10 2 2 0.04545455
12 2 4 0.04545455
15 1 5 0.02272727
16 10 15 0.22727273
17 16 31 0.36363636
18 6 37 0.13636364
19 4 41 0.09090909
20 2 43 0.04545455
22 1 44 0.02272727
With cbind and naming of the columns to your liking this should be pretty easy for you in the future. The output from the table function is a matrix, so this result is also a matrix. If this were being done on something big it would be more efficient todo this:
tbl <- table(x)
cbind( Freq=tbl, Cumul=cumsum(tbl), relative=prop.table(tbl))
回答3:
If you are looking for something pre-packaged, consider the freq()
function from the descr
package.
library(descr)
x = c(sample(10:20, 44, TRUE))
freq(x, plot = FALSE)
Or to get cumulative percents, use the ordered()
function
freq(ordered(x), plot = FALSE)
To add a "cumulative frequencies" column:
tab = as.data.frame(freq(ordered(x), plot = FALSE))
CumFreq = cumsum(tab[-dim(tab)[1],]$Frequency)
tab$CumFreq = c(CumFreq, NA)
tab
If your data has missing values, a valid percent column is added to the table.
x = c(sample(10:20, 44, TRUE), NA, NA)
freq(ordered(x), plot = FALSE)
回答4:
Yet another possibility:
library(SciencesPo)
x = c(sample(10:20, 50, TRUE))
freq(x)
回答5:
My suggestion is to check the agricolae package... check it out:
library(agricolae)
weight<-c( 68, 53, 69.5, 55, 71, 63, 76.5, 65.5, 69, 75, 76, 57, 70.5,
+ 71.5, 56, 81.5, 69, 59, 67.5, 61, 68, 59.5, 56.5, 73,
+ 61, 72.5, 71.5, 59.5, 74.5, 63)
h1<- graph.freq(weight,col="yellow",frequency=1,las=2,xlab="h1")
print(summary(h1),row.names=FALSE)