So, I'm trying to improve some of the operations that .net 4's BigInteger
class provide since the operations appear to be quadratic. I've made a rough Karatsuba implementation but it's still slower than I'd expect.
The main problem seems to be that BigInteger provides no simple way to count the number of bits and, so, I have to use BigInteger.Log(..., 2). According to Visual Studio, about 80-90% of the time is spent calculating logarithms.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Numerics;
namespace Test
{
class Program
{
static BigInteger Karatsuba(BigInteger x, BigInteger y)
{
int n = (int)Math.Max(BigInteger.Log(x, 2), BigInteger.Log(y, 2));
if (n <= 10000) return x * y;
n = ((n+1) / 2);
BigInteger b = x >> n;
BigInteger a = x - (b << n);
BigInteger d = y >> n;
BigInteger c = y - (d << n);
BigInteger ac = Karatsuba(a, c);
BigInteger bd = Karatsuba(b, d);
BigInteger abcd = Karatsuba(a+b, c+d);
return ac + ((abcd - ac - bd) << n) + (bd << (2 * n));
}
static void Main(string[] args)
{
BigInteger x = BigInteger.One << 500000 - 1;
BigInteger y = BigInteger.One << 600000 + 1;
BigInteger z = 0, q;
Console.WriteLine("Working...");
DateTime t;
// Test standard multiplication
t = DateTime.Now;
z = x * y;
Console.WriteLine(DateTime.Now - t);
// Test Karatsuba multiplication
t = DateTime.Now;
q = Karatsuba(x, y);
Console.WriteLine(DateTime.Now - t);
// Check they're equal
Console.WriteLine(z == q);
Console.Read();
}
}
}
So, what can I do to speed it up?
Why count all of the bits?
In vb I do this:
<Runtime.CompilerServices.Extension()> _
Function BitLength(ByVal n As BigInteger) As Integer
Dim Data() As Byte = n.ToByteArray
Dim result As Integer = (Data.Length - 1) * 8
Dim Msb As Byte = Data(Data.Length - 1)
While Msb
result += 1
Msb >>= 1
End While
Return result
End Function
In C# it would be:
public static int BitLength(this BigInteger n)
{
byte[] Data = n.ToByteArray();
int result = (Data.Length - 1) * 8;
byte Msb = Data[Data.Length - 1];
while (Msb != 0) {
result += 1;
Msb >>= 1;
}
return result;
}
Finally...
static BigInteger Karatsuba(BigInteger x, BigInteger y)
{
int n = (int)Math.Max(x.BitLength(), y.BitLength());
if (n <= 10000) return x * y;
n = ((n+1) / 2);
BigInteger b = x >> n;
BigInteger a = x - (b << n);
BigInteger d = y >> n;
BigInteger c = y - (d << n);
BigInteger ac = Karatsuba(a, c);
BigInteger bd = Karatsuba(b, d);
BigInteger abcd = Karatsuba(a+b, c+d);
return ac + ((abcd - ac - bd) << n) + (bd << (2 * n));
}
Calling the extension method may slow things down so perhaps this would be faster:
int n = (int)Math.Max(BitLength(x), BitLength(y));
FYI: with the bit length method you can also calculate a good approximation of the log much faster than the BigInteger Method.
bits = BitLength(a) - 1;
log_a = (double)i * log(2.0);
As far as accessing the internal UInt32 Array of the BigInteger structure, here is a hack for that.
import the reflection namespace
Private Shared ArrM As MethodInfo
Private Shard Bits As FieldInfo
Shared Sub New()
ArrM = GetType(System.Numerics.BigInteger).GetMethod("ToUInt32Array", BindingFlags.NonPublic Or BindingFlags.Instance)
Bits = GetType(System.Numerics.BigInteger).GetMember("_bits", BindingFlags.NonPublic Or BindingFlags.Instance)(0)
End Sub
<Extension()> _
Public Function ToUInt32Array(ByVal Value As System.Numerics.BigInteger) As UInteger()
Dim Result() As UInteger = ArrM.Invoke(Value, Nothing)
If Result(Result.Length - 1) = 0 Then
ReDim Preserve Result(Result.Length - 2)
End If
Return Result
End Function
Then you can get the underlying UInteger() of the big integer as
Dim Data() As UInteger = ToUInt32Array(Value)
Length = Data.Length
or Alternately
Dim Data() As UInteger = Value.ToUInt32Array()
Note that _bits fieldinfo can be used to directly access the underlying UInteger() _bits field of the BigInteger structure. This is faster than invoking the ToUInt32Array() method. However, when BigInteger B <= UInteger.MaxValue _bits is nothing. I suspect that as an optimization when a BigInteger fits the size of a 32 bit (machine size) word MS returns performs normal machine word arithmetic using the native data type.
I have also not been able to use the _bits.SetValue(B, Data()) as you normally would be able to using reflection. To work around this I use the BigInteger(bytes() b) constructor which has overhead. In c# you can use unsafe pointer operations to cast a UInteger() to Byte(). Since there are no pointer ops in VB, I use Buffer.BlockCopy. When access the data this way it is important to note that if the MSB of the bytes() array is set, MS interprets it as a Negative number. I would prefer they made a constructor with a separate sign field. The word array is to add an addition 0 byte to make uncheck the MSB
Also, when squaring you can improve even further
Function KaratsubaSquare(ByVal x As BigInteger)
Dim n As Integer = BitLength(x) 'Math.Max(BitLength(x), BitLength(y))
If (n <= KaraCutoff) Then Return x * x
n = ((n + 1) >> 1)
Dim b As BigInteger = x >> n
Dim a As BigInteger = x - (b << n)
Dim ac As BigInteger = KaratsubaSquare(a)
Dim bd As BigInteger = KaratsubaSquare(b)
Dim c As BigInteger = Karatsuba(a, b)
Return ac + (c << (n + 1)) + (bd << (2 * n))
End Function
This eliminates 2 shifts, 2 additions and 3 subtractions from each recursion of your multiplication algorithm.