For example, I have a data in the following csv
format:
csv
col0 col1 col2 col3
1 A E|A|C 3
0 B D|F 2
2 C | 2
Each column seperated by comma represent one feature. Normally, a feature is one-hot(e.g. col0, col1, col3
), but in this case, the feature for col2
has multiple inputs(seperated by |).
I'm sure tensorflow can handle one-hot feature with sparse tensor, but I'm not sure whether it could handle features with multiple inputs like col2
?
How should it be represented in Tensorflow's sparse tensor?
I am using the code below (but i don't know input method of col2
)
col0 = tf.feature_column.numeric_column('ID')
col1 = tf.feature_column.categorical_column_with_hash_bucket('Title', hash_bucket_size=1000)
col3 = tf.feature_column.numeric_column('Score')
columns = [col0, col1, col3]
tf.estimator.DNNClassifier(
model_dir=None,
feature_columns=columns,
hidden_units=[10, 10],
n_classes=4
)
Thanks for your help.
OK Looks like writing custom feature column worked for me with the same task.
I took HashedCategoricalColumn as a base, and cleaned up to work with strings only. Should add checks for type though.
class _SparseArrayCategoricalColumn(
_CategoricalColumn,
collections.namedtuple('_SparseArrayCategoricalColumn',
['key', 'num_buckets', 'category_delimiter'])):
@property
def name(self):
return self.key
@property
def _parse_example_spec(self):
return {self.key: parsing_ops.VarLenFeature(dtypes.string)}
def _transform_feature(self, inputs):
input_tensor = inputs.get(self.key)
flat_input = array_ops.reshape(input_tensor, (-1,))
input_tensor = tf.string_split(flat_input, self.category_delimiter)
if not isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
raise ValueError('SparseColumn input must be a SparseTensor.')
sparse_values = input_tensor.values
# tf.summary.text(self.key, flat_input)
sparse_id_values = string_ops.string_to_hash_bucket_fast(
sparse_values, self.num_buckets, name='lookup')
return sparse_tensor_lib.SparseTensor(
input_tensor.indices, sparse_id_values, input_tensor.dense_shape)
@property
def _variable_shape(self):
if not hasattr(self, '_shape'):
self._shape = tensor_shape.vector(self.num_buckets)
return self._shape
@property
def _num_buckets(self):
"""Returns number of buckets in this sparse feature."""
return self.num_buckets
def _get_sparse_tensors(self, inputs, weight_collections=None,
trainable=None):
return _CategoricalColumn.IdWeightPair(inputs.get(self), None)
def categorical_column_with_array_input(key,
num_buckets, category_delimiter="|"):
if (num_buckets is None) or (num_buckets < 1):
raise ValueError('Invalid num_buckets {}.'.format(num_buckets))
return _SparseArrayCategoricalColumn(key, num_buckets, category_delimiter)
Then it may be wrapped by embedding/indicator column.
Seems it is what you need.
It was first step for me. I need to handle column with values like "str:float|str:float...".