How can we get legends for seaborn FacetGrid
heatmaps? The .add_legend()
method isn't working for me.
Using code from this previous question:
import pandas as pd
import numpy as np
import itertools
import seaborn as sns
print("seaborn version {}".format(sns.__version__))
# R expand.grid() function in Python
# https://stackoverflow.com/a/12131385/1135316
def expandgrid(*itrs):
product = list(itertools.product(*itrs))
return {'Var{}'.format(i+1):[x[i] for x in product] for i in range(len(itrs))}
methods=['method 1', 'method2', 'method 3', 'method 4']
times = range(0,100,10)
data = pd.DataFrame(expandgrid(methods, times, times))
data.columns = ['method', 'dtsi','rtsi']
data['nw_score'] = np.random.sample(data.shape[0])
def facet(data,color):
data = data.pivot(index="dtsi", columns='rtsi', values='nw_score')
g = sns.heatmap(data, cmap='Blues', cbar=False)
with sns.plotting_context(font_scale=5.5):
g = sns.FacetGrid(data, col="method", col_wrap=2, size=3, aspect=1)
g = g.map_dataframe(facet)
g.add_legend()
g.set_titles(col_template="{col_name}", fontweight='bold', fontsize=18)
What you want (in matplotlib lingo) is a colorbar, not a legend. In matplotlib, the former is used for continuous data, while the latter is used for categorical data. Colorbar support isn't built into FacetGrid
, but it is not hard to expand your example code to add a colorbar:
import pandas as pd
import numpy as np
import itertools
import seaborn as sns
methods=['method 1', 'method2', 'method 3', 'method 4']
times = range(0, 100, 10)
data = pd.DataFrame(list(itertools.product(methods, times, times)))
data.columns = ['method', 'dtsi','rtsi']
data['nw_score'] = np.random.sample(data.shape[0])
def facet_heatmap(data, color, **kws):
data = data.pivot(index="dtsi", columns='rtsi', values='nw_score')
sns.heatmap(data, cmap='Blues', **kws) # <-- Pass kwargs to heatmap
with sns.plotting_context(font_scale=5.5):
g = sns.FacetGrid(data, col="method", col_wrap=2, size=3, aspect=1)
cbar_ax = g.fig.add_axes([.92, .3, .02, .4]) # <-- Create a colorbar axes
g = g.map_dataframe(facet_heatmap,
cbar_ax=cbar_ax,
vmin=0, vmax=1) # <-- Specify the colorbar axes and limits
g.set_titles(col_template="{col_name}", fontweight='bold', fontsize=18)
g.fig.subplots_adjust(right=.9) # <-- Add space so the colorbar doesn't overlap the plot
I've indicated the changes I made and the rationale for them as inline comments.