I am trying to parallelize a code using class methods via multiprocessing. The basic structure is the following:
# from multiprocessing import Pool
from pathos.multiprocessing import ProcessingPool as Pool
class myclass(object):
def __init__(self):
#some code
def mymethod(self):
#more code
return another_instance_of_myclass
def myfunc(myinstance,args):
#some code
test=myinstance.mymethod()
#more code
return myresult #not an instance,just a number
p=Pool()
result = p.map(myfunc,listwithdata)
After this had failed with the normal multiprocessing, I became aware of the issues with Pickle and Multiprocessing, so I tried to solve it with multiprocessing.pathos. However, I am still getting
PicklingError: Can't pickle <type 'SwigPyObject'>: it's not found as__builtin__.SwigPyObjec
together with lots of errors from pickle.py. Apart from this practical problem, I don't quite understand why anything but the final result of myfunc is being pickled at all.
pathos
uses dill
, and dill
serializes classes differently than python's pickle
module does. pickle
serializes classes by reference. dill
(by default) serializes classes directly, and only optionally by reference.
>>> import dill
>>>
>>> class Foo(object):
... def __init__(self, x):
... self.x = x
... def bar(self, y):
... return self.x + y * z
... z = 1
...
>>> f = Foo(2)
>>>
>>> dill.dumps(f) # the dill default, explicitly serialize a class
'\x80\x02cdill.dill\n_create_type\nq\x00(cdill.dill\n_load_type\nq\x01U\x08TypeTypeq\x02\x85q\x03Rq\x04U\x03Fooq\x05h\x01U\nObjectTypeq\x06\x85q\x07Rq\x08\x85q\t}q\n(U\r__slotnames__q\x0b]q\x0cU\n__module__q\rU\x08__main__q\x0eU\x03barq\x0fcdill.dill\n_create_function\nq\x10(cdill.dill\n_unmarshal\nq\x11Uyc\x02\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00C\x00\x00\x00s\x0f\x00\x00\x00|\x00\x00j\x00\x00|\x01\x00t\x01\x00\x14\x17S(\x01\x00\x00\x00N(\x02\x00\x00\x00t\x01\x00\x00\x00xt\x01\x00\x00\x00z(\x02\x00\x00\x00t\x04\x00\x00\x00selft\x01\x00\x00\x00y(\x00\x00\x00\x00(\x00\x00\x00\x00s\x07\x00\x00\x00<stdin>t\x03\x00\x00\x00bar\x04\x00\x00\x00s\x02\x00\x00\x00\x00\x01q\x12\x85q\x13Rq\x14c__builtin__\n__main__\nh\x0fNN}q\x15tq\x16Rq\x17U\x01zq\x18K\x01U\x07__doc__q\x19NU\x08__init__q\x1ah\x10(h\x11Uuc\x02\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00C\x00\x00\x00s\r\x00\x00\x00|\x01\x00|\x00\x00_\x00\x00d\x00\x00S(\x01\x00\x00\x00N(\x01\x00\x00\x00t\x01\x00\x00\x00x(\x02\x00\x00\x00t\x04\x00\x00\x00selfR\x00\x00\x00\x00(\x00\x00\x00\x00(\x00\x00\x00\x00s\x07\x00\x00\x00<stdin>t\x08\x00\x00\x00__init__\x02\x00\x00\x00s\x02\x00\x00\x00\x00\x01q\x1b\x85q\x1cRq\x1dc__builtin__\n__main__\nh\x1aNN}q\x1etq\x1fRq utq!Rq")\x81q#}q$U\x01xq%K\x02sb.'
>>> dill.dumps(f, byref=True) # the pickle default, serialize by reference
'\x80\x02c__main__\nFoo\nq\x00)\x81q\x01}q\x02U\x01xq\x03K\x02sb.'
Not serializing by reference is much more flexible. However, in rare circumstances, working with references is better (as it appears to be the case when pickling something built on a SwigPyObject
).
I have been meaning (for ~2 years) to expose the byref
flag to the dump
call inside of pathos
, but have not done so yet. It should be a fairly simple edit to do so. I've just added a ticket to do so: https://github.com/uqfoundation/pathos/issues/58. While I'm at it, it should also be easy to open up replacement of the dump
and load
functions that pathos
uses… that way you could use customized serializers (i.e. extend those that dill
provides, or use some other serializer).
In multiprocessing function serialization is needed for interprocess communication. Pickle does a poor job for this purpose, install dill via pip instead. Details (with a nice Star Trek example) can be found here:
http://matthewrocklin.com/blog/work/2013/12/05/Parallelism-and-Serialization/