What is the purpose of std::make_pair
?
Why not just do std::pair<int, char>(0, 'a')
?
Is there any difference between the two methods?
What is the purpose of std::make_pair
?
Why not just do std::pair<int, char>(0, 'a')
?
Is there any difference between the two methods?
The difference is that with std::pair
you need to specify the types of both elements, whereas std::make_pair
will create a pair with the type of the elements that are passed to it, without you needing to tell it. That's what I could gather from various docs anyways.
See this example from http://www.cplusplus.com/reference/std/utility/make_pair/
pair <int,int> one;
pair <int,int> two;
one = make_pair (10,20);
two = make_pair (10.5,'A'); // ok: implicit conversion from pair<double,char>
Aside from the implicit conversion bonus of it, if you didn't use make_pair you'd have to do
one = pair<int,int>(10,20)
every time you assigned to one, which would be annoying over time...
As @MSalters replied above, you can now use curly braces to do this in C++11 (just verified this with a C++11 compiler):
pair<int, int> p = {1, 2};
There is no difference between using make_pair
and explicitly calling the pair
constructor with specified type arguments. std::make_pair
is more convenient when the types are verbose because a template method has type deduction based on its given parameters.
For example,
std::vector< std::pair< std::vector<int>, std::vector<int> > > vecOfPair;
std::vector<int> emptyV;
// shorter
vecOfPair.push_back(std::make_pair(emptyV, emptyV));
// longer
vecOfPair.push_back(std::pair< std::vector<int>, std::vector<int> >(emptyV, emptyV));
It's worth noting that this is a common idiom in C++ template programming. It's known as the Object Generator idiom, you can find more information and a nice example here.
Edit As someone suggested in the comments (since removed) the following is a slightly modified extract from the link in case it breaks.
An Object Generator allows creation of objects without explicitly specifying their types. It is based on a useful property of function templates which class templates don't have: The type parameters of a function template are deduced automatically from its actual parameters. std::make_pair
is a simple example that returns an instance of the std::pair
template depending on the actual parameters of the std::make_pair
function.
template <class T, class U>
std::pair <T, U>
make_pair(T t, U u)
{
return std::pair <T, U> (t,u);
}
Class template arguments could not be inferred from the constructor before C++17
Before C++17 you could not write something like:
std::pair p(1, 'a');
since that would infer template types from the constructor arguments.
C++17 makes that syntax possible, and therefore make_pair
redundant.
Before C++17, std::make_pair
allowed us to write less verbose code:
MyLongClassName1 o1();
MyLongClassName2 o2();
auto p = std::make_pair(o1, o2);
instead of the more verbose:
std::pair<MyLongClassName1,MyLongClassName2> p{o1, o2};
which repeats the types, and can be very long.
Type inference works in that pre-C++17 case because make_pair
is not a constructor.
make_pair
is essentially equivalent to:
template<class T1, class T2>
std::pair<T1, T2> my_make_pair(T1 t1, T2 t2) {
return std::pair<T1, T2>(t1, t2);
}
The same concept applies to inserter
vs insert_iterator
.
See also:
make_pair creates an extra copy over the direct constructor. I always typedef my pairs to provide simple syntax.
This shows the difference (example by Rampal Chaudhary):
class Sample
{
static int _noOfObjects;
int _objectNo;
public:
Sample() :
_objectNo( _noOfObjects++ )
{
std::cout<<"Inside default constructor of object "<<_objectNo<<std::endl;
}
Sample( const Sample& sample) :
_objectNo( _noOfObjects++ )
{
std::cout<<"Inside copy constructor of object "<<_objectNo<<std::endl;
}
~Sample()
{
std::cout<<"Destroying object "<<_objectNo<<std::endl;
}
};
int Sample::_noOfObjects = 0;
int main(int argc, char* argv[])
{
Sample sample;
std::map<int,Sample> map;
map.insert( std::make_pair( 1, sample) );
//map.insert( std::pair<int,Sample>( 1, sample) );
return 0;
}