I want to convert two numpy array to one DataFrame
containing two columns.
The first numpy array 'images' is of shape 102, 1024
.
The second numpy array 'label' is of shape (1020, )
My core code is:
images=np.array(images)
label=np.array(label)
l=np.array([images,label])
dataset=pd.DataFrame(l)
But it turns out to be an error saying that:
ValueError: could not broadcast input array from shape (1020,1024) into shape (1020)
What should I do to convert these two numpy array into two columns in one dataframe?
You can't stack them easily, especially if you want them as different columns, because you can't insert a 2D array in one column of a DataFrame, so you need to convert it to something else, for example a list
.
So something like this would work:
import pandas as pd
import numpy as np
images = np.array(images)
label = np.array(label)
dataset = pd.DataFrame({'label': label, 'images': list(images)}, columns=['label', 'images'])
This will create a DataFrame
with 1020 rows and 2 columns, where each item in the second column contains 1D arrays of length 1024.