I'm not sure that this is possible, but say I have:
using my_variant = std::variant<Class1, Class2, Class3>;
Now at some point, I create a Class4
and would like to extend my_variant2
to include all of my_variant
along with Class4
(in a general way, i.e. not just using another using...
) so that I can do something like create an array std::array<my_variant2, n>
.
Is this something that can be done?
godbolted
#include <variant>
template <typename T, typename... Args> struct concatenator;
template <typename... Args0, typename... Args1>
struct concatenator<std::variant<Args0...>, Args1...> {
using type = std::variant<Args0..., Args1...>;
};
int main() {
using type_t = std::variant<int, char, double>;
static_assert(
std::is_same_v<
concatenator<type_t, float, short>::type,
std::variant<int, char, double, float, short>>);
return 0;
}
There are two steps to achieving this. The first is to identify the list of types used in the original std::variant
and the second is to construct a new std::variant
type with the original arguments plus the one to add.
Partial template specialization can be used to write a trait that will obtain the list of template types used in a given std::variant
:
#include <variant>
template<class T>
struct t_variant_cat;
template<class ... Old>
struct t_variant_cat<std::variant<Old...>> {
// Old is a parameter pack containing all of
// template arguments of the std::variant
};
Next we add another template argument that specifies the type to add and define an alias for this new type.
#include <variant>
template<class T, class New>
struct t_variant_cat;
template<class ... Old, class New>
struct t_variant_cat<std::variant<Old...>, New> {
using type = std::variant<Old..., New>;
};
typename t_variant_cat<my_variant, Class4>::type
should now yield std::variant<Class1, Class2, Class3, Class4>
. For convenience we can add a type alias to avoid having to write typename
and ::type
each time :
template<class Old, class New>
using t_variant_cat_t = typename t_variant_cat<Old, New>::type;
The usage would be :
#include <variant>
template<class T, class New>
struct t_variant_cat;
template<class ... Old, class New>
struct t_variant_cat<std::variant<Old...>, New> {
using type = std::variant<Old..., New>;
};
template<class Old, class New>
using t_variant_cat_t = typename t_variant_cat<Old, New>::type;
using old = std::variant<int, float>;
using extended = t_variant_cat_t<old, double>;
// Makes sure this actually works
static_assert(std::is_same_v<extended, std::variant<int, float, double>>,
"Something is wrong.");
namespace impl_details {
template<class Var, class...Ts>
struct extend_type;
template<template<class...>class Z, class...Vs, class...Ts>
struct extend_type<Z<Vs...>, Ts...> {
using type=Z<Vs..., Ts...>;
};
}
template<class Var, class...Ts>
using extend_type = typename impl_details::extend_type<Var, Ts...>::type;
now
extend_type<my_variant, Class4>
is
std::variant<Class1, Class2, Class3, Class4>
althought I disapprove of your 1-based indexing.
extend_type< std::tuple<a,b,c>, d, e, f >
also works.
I can have some fun with this...
namespace impl_details {
template<class Lhs, class Rhs>
struct type_cat;
template<template<class...>class Z, class...Lhs, class...Rhs>
struct type_cat<Z<Lhs...>, Z<Rhs...>> {
using type=Z<Lhs..., Rhs...>;
};
}
template<class Lhs, class Rhs>
using type_cat = typename impl_details::type_cat<Lhs, Rhs>::type;
auto variant_trinary( bool b ) {
return [b](auto&& lhs, auto&& rhs) {
using R=type_cat< std::decay_t<decltype(lhs)>, std::decay_t<decltype(rhs)> >;
auto as_R = [](auto&&x)->R{ return decltype(x)(x)); };
if (b)
return std::visit( as_R, lhs );
else
return std::visit( as_R, rhs );
};
}
which gives us the trinary operator on two variants.
auto var = variant_trinary(bool_expr)( var1, var2 );
where var
is the concatination of the variant types of var1
and var2
.