pandas pivoting a dataframe, duplicate rows [dupli

2020-02-29 19:18发布

问题:

This question already has answers here:
Closed 2 years ago.

I'm having a little trouble with pivoting in pandas. The dataframe (dates, location, data) I'm working on looks like:

dates    location    data
date1       A         X
date2       A         Y
date3       A         Z
date1       B         XX
date2       B         YY

Basically, I'm trying to pivot on location to end up with a dataframe like:

dates   A    B    C
date1   X    XX   etc...
date2   Y    YY
date3   Z    ZZ 

Unfortunately when I pivot, the index, which is equivalent to the original dates column, does not change and I get:

dates  A   B   C
date1  X   NA  etc...
date2  Y   NA
date3  Z   NA
date1  NA  XX
date2  NA  YY

Does anyone know how I can fix this issue to get the dataframe formate I'm looking for?

I'm current calling Pivot as such:

df.pivot(index="dates", columns="location")

because I have a # of data columns I want to pivot (don't want to list each one as an argument). I believe by default pivot pivots the rest of the columns in the dataframe. Thanks.

回答1:

If you have multiple data columns, calling pivot without the values columns should give you a pivoted frame with a MultiIndex as the columns:

In [3]: df
Out[3]: 
  columns     data1     data2 index
0       a -0.602398 -0.982524     x
1       a  0.880927  0.818551     y
2       b -0.238849  0.766986     z
3       b -1.304346  0.955031     x
4       c -0.094820  0.746046     y
5       c -0.835785  1.123243     z

In [4]: df.pivot('index', 'columns')
Out[4]: 
            data1                         data2                    
columns         a         b         c         a         b         c
index                                                              
x       -0.602398 -1.304346       NaN -0.982524  0.955031       NaN
y        0.880927       NaN -0.094820  0.818551       NaN  0.746046
z             NaN -0.238849 -0.835785       NaN  0.766986  1.123243


回答2:

How are you calling DataFrame.pivot and what datatype is your dates column?

Suppose I have a DataFrame that's similar to yours, the dates columns contains datetime objects:

In [52]: df
Out[52]: 
       data                dates loc
0  0.870900  2000-01-01 00:00:00   A
1  0.344999  2000-01-02 00:00:00   A
2  0.001729  2000-01-03 00:00:00   A
3  1.565684  2000-01-01 00:00:00   B
4 -0.851542  2000-01-02 00:00:00   B


In [53]: df.pivot('dates', 'loc', 'data')
Out[53]: 
loc                A         B
dates                         
2000-01-01  0.870900  1.565684
2000-01-02  0.344999 -0.851542
2000-01-03  0.001729       NaN


回答3:

Just answered my own question. I was using an old Sybase module to import data and I think it used an old DateTimeType object from mxDatetime. In that module, a datetime of Jan 01 2011 would not necessarily equal another datetime of Jan 01 2011 (e.g. each datetime was unique). Hence the dataframe pivot treated each column value as unique in the index.

Thanks for the help.