In Pandas, what is a good way to select sets of arbitrary rows in a multiindex?
df = pd.DataFrame(columns=['A', 'B', 'C'])
df['A'] = ['a', 'a', 'b', 'b']
df['B'] = [1,2,3,4]
df['C'] = [1,2,3,4]
the_indices_we_want = df.ix[[0,3],['A','B']]
df = df.set_index(['A', 'B']) #Create a multiindex
df.ix[the_indices_we_want] #ValueError: Cannot index with multidimensional key
df.ix[[tuple(x) for x in the_indices_we_want.values]]
This last line is an answer, but it feels clunky answer; they can't even be lists, they have to be tuples. It also involves generating a new object to do the indexing with. I'm in a situation where I'm trying to do a lookup on a multiindex dataframe, with indices from another dataframe:
data_we_want = dataframe_with_the_data.ix[dataframe_with_the_indices[['Index1','Index2']]]
Right now it looks like I need to write it like this:
data_we_want = dataframe_with_the_data.ix[[tuple(x) for x in dataframe_with_the_indices[['Index1','Index2']].values]]
That is workable, but if there are many rows (i.e. hundreds of millions of desired indices) then generating this list of tuples becomes quite the burden. Any solutions?
Edit: The solution by @joris works, but not if the indices are all numbers. Example where the indices are all integers:
df = pd.DataFrame(columns=['A', 'B', 'C'])
df['A'] = ['a', 'a', 'b', 'b']
df['B'] = [1,2,3,4]
df['C'] = [1,2,3,4]
the_indices_we_want = df.ix[[0,3],['B','C']]
df = df.set_index(['B', 'C'])
df.ix[pd.Index(the_indices_we_want)] #ValueError: Cannot index with multidimensional key
df.ix[pd.Index(the_indices_we_want.astype('object'))] #Works, though feels clunky.