How to get away with a multidimensional index in p

2020-02-28 06:21发布

问题:

In Pandas, what is a good way to select sets of arbitrary rows in a multiindex?

df = pd.DataFrame(columns=['A', 'B', 'C'])
df['A'] = ['a', 'a', 'b', 'b']
df['B'] = [1,2,3,4]
df['C'] = [1,2,3,4]

the_indices_we_want = df.ix[[0,3],['A','B']]
df = df.set_index(['A', 'B']) #Create a multiindex

df.ix[the_indices_we_want] #ValueError: Cannot index with multidimensional key

df.ix[[tuple(x) for x in the_indices_we_want.values]]

This last line is an answer, but it feels clunky answer; they can't even be lists, they have to be tuples. It also involves generating a new object to do the indexing with. I'm in a situation where I'm trying to do a lookup on a multiindex dataframe, with indices from another dataframe:

data_we_want = dataframe_with_the_data.ix[dataframe_with_the_indices[['Index1','Index2']]]

Right now it looks like I need to write it like this:

data_we_want = dataframe_with_the_data.ix[[tuple(x) for x in dataframe_with_the_indices[['Index1','Index2']].values]]

That is workable, but if there are many rows (i.e. hundreds of millions of desired indices) then generating this list of tuples becomes quite the burden. Any solutions?


Edit: The solution by @joris works, but not if the indices are all numbers. Example where the indices are all integers:

df = pd.DataFrame(columns=['A', 'B', 'C'])
df['A'] = ['a', 'a', 'b', 'b']
df['B'] = [1,2,3,4]
df['C'] = [1,2,3,4]

the_indices_we_want = df.ix[[0,3],['B','C']]
df = df.set_index(['B', 'C'])

df.ix[pd.Index(the_indices_we_want)] #ValueError: Cannot index with multidimensional key

df.ix[pd.Index(the_indices_we_want.astype('object'))] #Works, though feels clunky.

回答1:

You indeed cannot index with a DataFrame directly, but if you convert it to an Index object, it does the correct thing (a row in the DataFrame will be regarded as one multi-index entry):

In [43]: pd.Index(the_indices_we_want)
Out[43]: Index([(u'a', 1), (u'b', 4)], dtype='object')

In [44]: df.ix[pd.Index(the_indices_we_want)]
Out[44]:
     C
A B
a 1  1
b 4  4

In [45]: df.ix[[tuple(x) for x in the_indices_we_want.values]]
Out[45]:
     C
A B
a 1  1
b 4  4

This is a somewhat cleaner. And with some quick tests it seems to be a bit faster (but not much, only 2 times)



回答2:

In newer versions of pandas you can simply use .iloc for row indexing.

df = pd.DataFrame(columns=['A', 'B', 'C'])
df['A'] = ['a', 'a', 'b', 'b']
df['B'] = [1,2,3,4]
df['C'] = [1,2,3,4]
df.iloc[[0, 3]][['A', 'B']]