I have the following data
Date Col1 Col2
2014-01-01 123 12
2014-01-01 123 21
2014-01-01 124 32
2014-01-01 125 32
2014-01-02 123 34
2014-01-02 126 24
2014-01-02 127 23
2014-01-03 521 21
2014-01-03 123 13
2014-01-03 126 15
Now, I want to count unique values in Col1
for the each date (that did not repeat in previous date), and add to the previous count. For example,
Date Count
2014-01-01 3 i.e. 123,124,125
2014-01-02 5 (2 + above 3) i.e. 126, 127
2014-01-03 6 (1 + above 5) i.e. 521 only
library(dplyr)
df %.%
arrange(Date) %.%
filter(!duplicated(Col1)) %.%
group_by(Date) %.%
summarise(Count=n()) %.% # n() <=> length(Date)
mutate(Count = cumsum(Count))
# Source: local data frame [3 x 2]
#
# Date Count
# 1 2014-01-01 3
# 2 2014-01-02 5
# 3 2014-01-03 6
library(data.table)
dt <- data.table(df, key="Date")
dt <- unique(dt, by="Col1")
(dt <- dt[, list(Count=.N), by=Date][, Count:=cumsum(Count)])
# Date Count
# 1: 2014-01-01 3
# 2: 2014-01-02 5
# 3: 2014-01-03 6
Or
dt <- data.table(df, key="Date")
dt <- unique(dt, by="Col1")
dt[, .N, by=Date][, Count:=cumsum(N)]
.N
is named N
(no dot) automatically for convenience in chained operations like this, so you can use both .N
and N
together in the next operation if need be.
With ddply and duplicated, you just have to do
df <- ddply(data, .(Date, Col1), nrow)
df2 <- ddply(df[!duplicated(df$Col1),], .(Date), nrow)
ddply(df2, .(Date, V1), nrow)
ie you first count for all couples Date, Col1, then you remove the duplicated columns. You finally count the colums.
Your data must be sorted before.