How to specify AWS Access Key ID and Secret Access

2020-02-26 04:08发布

问题:

I am passing input and output folders as parameters to mapreduce word count program from webpage.

Getting below error:

HTTP Status 500 - Request processing failed; nested exception is java.lang.IllegalArgumentException: AWS Access Key ID and Secret Access Key must be specified as the username or password (respectively) of a s3n URL, or by setting the fs.s3n.awsAccessKeyId or fs.s3n.awsSecretAccessKey properties (respectively).

回答1:

The documentation has the format: http://wiki.apache.org/hadoop/AmazonS3

 s3n://ID:SECRET@BUCKET/Path


回答2:

I suggest you use this:

hadoop distcp \
-Dfs.s3n.awsAccessKeyId=<your_access_id> \ 
-Dfs.s3n.awsSecretAccessKey=<your_access_key> \
s3n://origin hdfs://destinations

It also works as a workaround for the occurrence of slashes in the key. The parameters with the id and access key must be supplied exactly in this order: after disctcp and before origin



回答3:

Passing in the AWS Credentials as part of the Amazon s3n url is not normally recommended, security wise. Especially if that code is pushed to a repository holding service (like github). Ideally set your credentials in the conf/core-site.xml as:

<configuration>
  <property>
    <name>fs.s3n.awsAccessKeyId</name>
    <value>XXXXXX</value>
  </property>

  <property>
    <name>fs.s3n.awsSecretAccessKey</name>
    <value>XXXXXX</value>
  </property>
</configuration>

or reinstall awscli on your machine.

pip install awscli


回答4:

For pyspark beginner:

Prepare

Download jar from https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-aws
, put this to spark jars folder

Then you can

1. Hadoop config file

core-site.xml

export AWS_ACCESS_KEY_ID=<access-key>
export AWS_SECRET_ACCESS_KEY=<secret-key>

<configuration>
  <property>
    <name>fs.s3n.impl</name>
    <value>org.apache.hadoop.fs.s3native.NativeS3FileSystem</value>
  </property>

  <property>
    <name>fs.s3a.impl</name>
    <value>org.apache.hadoop.fs.s3a.S3AFileSystem</value>
  </property>

  <property>
    <name>fs.s3.impl</name>
    <value>org.apache.hadoop.fs.s3.S3FileSystem</value>
  </property>
</configuration>

2. pyspark config

sc._jsc.hadoopConfiguration().set("fs.s3.awsAccessKeyId", access_key)
sc._jsc.hadoopConfiguration().set("fs.s3n.awsAccessKeyId", access_key)
sc._jsc.hadoopConfiguration().set("fs.s3a.access.key", access_key)
sc._jsc.hadoopConfiguration().set("fs.s3.awsSecretAccessKey", secret_key)
sc._jsc.hadoopConfiguration().set("fs.s3n.awsSecretAccessKey", secret_key)
sc._jsc.hadoopConfiguration().set("fs.s3a.secret.key", secret_key)
sc._jsc.hadoopConfiguration().set("fs.s3n.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
sc._jsc.hadoopConfiguration().set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
sc._jsc.hadoopConfiguration().set("fs.s3.impl", "org.apache.hadoop.fs.s3.S3FileSystem")

Example

import sys
from random import random
from operator import add

from pyspark.sql import SparkSession
from pyspark.conf import SparkConf


if __name__ == "__main__":
    """
        Usage: S3 sample
    """
    access_key = '<access-key>'
    secret_key = '<secret-key>'

    spark = SparkSession\
        .builder\
        .appName("Demo")\
        .getOrCreate()

    sc = spark.sparkContext

    # remove this block if use core-site.xml and env variable
    sc._jsc.hadoopConfiguration().set("fs.s3.awsAccessKeyId", access_key)
    sc._jsc.hadoopConfiguration().set("fs.s3n.awsAccessKeyId", access_key)
    sc._jsc.hadoopConfiguration().set("fs.s3a.access.key", access_key)
    sc._jsc.hadoopConfiguration().set("fs.s3.awsSecretAccessKey", secret_key)
    sc._jsc.hadoopConfiguration().set("fs.s3n.awsSecretAccessKey", secret_key)
    sc._jsc.hadoopConfiguration().set("fs.s3a.secret.key", secret_key)
    sc._jsc.hadoopConfiguration().set("fs.s3n.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
    sc._jsc.hadoopConfiguration().set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
    sc._jsc.hadoopConfiguration().set("fs.s3.impl", "org.apache.hadoop.fs.s3.S3FileSystem")

    # fetch from s3, returns RDD
    csv_rdd = spark.sparkContext.textFile("s3n://<bucket-name>/path/to/file.csv")
    c = csv_rdd.count()
    print("~~~~~~~~~~~~~~~~~~~~~count~~~~~~~~~~~~~~~~~~~~~")
    print(c)

    spark.stop()


回答5:

create file core-site.xml and put it in class path. In the file specify

<configuration>
    <property>
        <name>fs.s3.awsAccessKeyId</name>
        <value>your aws access key id</value>
        <description>
            aws s3 key id
        </description>
    </property>

    <property>
        <name>fs.s3.awsSecretAccessKey</name>
        <value>your aws access key</value>
        <description>
            aws s3 key
        </description>
    </property>
</configuration>

Hadoop by default specifies two resources, loaded in-order from the classpath:

  • core-default.xml: Read-only defaults for hadoop
  • core-site.xml: Site-specific configuration for a given hadoop installation