Python Pandas Sum Values in Columns If date betwee

2020-02-26 01:37发布

问题:

I have a dataframe df which can be created with this:

data={'id':[1,1,1,1,2,2,2,2],
      'date1':[datetime.date(2016,1,1),datetime.date(2016,1,2),datetime.date(2016,1,3),datetime.date(2016,1,4),
               datetime.date(2016,1,2),datetime.date(2016,1,4),datetime.date(2016,1,3),datetime.date(2016,1,1)],
      'date2':[datetime.date(2016,1,5),datetime.date(2016,1,3),datetime.date(2016,1,5),datetime.date(2016,1,5),
               datetime.date(2016,1,4),datetime.date(2016,1,5),datetime.date(2016,1,4),datetime.date(2016,1,1)],
      'score1':[5,7,3,2,9,3,8,3],
      'score2':[1,3,0,5,2,20,7,7]}
df=pd.DataFrame.from_dict(data)

And looks like this:
   id       date1       date2  score1  score2
0   1  2016-01-01  2016-01-05       5       1
1   1  2016-01-02  2016-01-03       7       3
2   1  2016-01-03  2016-01-05       3       0
3   1  2016-01-04  2016-01-05       2       5
4   2  2016-01-02  2016-01-04       9       2
5   2  2016-01-04  2016-01-05       3      20
6   2  2016-01-03  2016-01-04       8       7
7   2  2016-01-01  2016-01-01       3       7

What I need to do is create a column for each of score1 and score2, which creates two columns which SUM the values of score1 and score2 respectively, based on whether the usedate is between date1 and date2. usedate is created by getting all dates between and including the date1 minimum and the date2 maximum. I used this to create the date range:

drange=pd.date_range(df.date1.min(),df.date2.max())    

The resulting dataframe newdf should look like:

     usedate  score1sum  score2sum
0 2016-01-01          8          8
1 2016-01-02         21          6
2 2016-01-03         32         13
3 2016-01-04         30         35
4 2016-01-05         13         26

For clarification, on usedate 2016-01-01, score1sum is 8, which is calculated by looking at the rows in df where 2016-01-01 is between and including date1 and date2, which sum row0(5) and row8(3). On usedate 2016-01-04, score2sum is 35, which is calculated by looking at the rows in df where 2016-01-04 is between and including date1 and date2, which sum row0(1), row3(0), row4(5), row5(2), row6(20), row7(7).

Maybe some kind of groupby, or melt then groupby?

回答1:

You can use apply with lambda function:

df['date1'] = pd.to_datetime(df['date1'])

df['date2'] = pd.to_datetime(df['date2'])

df1 = pd.DataFrame(index=pd.date_range(df.date1.min(), df.date2.max()), columns = ['score1sum', 'score2sum'])

df1[['score1sum','score2sum']] = df1.apply(lambda x: df.loc[(df.date1 <= x.name) & 
                                                            (x.name <= df.date2),
                                                            ['score1','score2']].sum(), axis=1)

df1.rename_axis('usedate').reset_index()

Output:

     usedate  score1sum  score2sum
0 2016-01-01          8          8
1 2016-01-02         21          6
2 2016-01-03         32         13
3 2016-01-04         30         35
4 2016-01-05         13         26


回答2:

Method 1: list comprehensions

This is inelegant, but hey, it works! (EDIT: added a second method below.)

# Convert datetime.date to pandas timestamps for easier comparisons
df['date1'] = pd.to_datetime(df['date1'])
df['date2'] = pd.to_datetime(df['date2'])

# solution
newdf = pd.DataFrame(data=drange, columns=['usedate'])
# for each usedate ud, get all df rows whose dates contain ud,
# then sum the scores of these rows
newdf['score1sum'] = [df[(df['date1'] <= ud) & (df['date2'] >= ud)]['score1'].sum() for ud in drange]
newdf['score2sum'] = [df[(df['date1'] <= ud) & (df['date2'] >= ud)]['score2'].sum() for ud in drange]

# output
newdf
     usedate  score1sum  score2sum
  2016-01-01          8          8
  2016-01-02         21          6
  2016-01-03         32         13
  2016-01-04         30         35
  2016-01-05         13         26

Method 2: a helper function with transform (or apply)

newdf = pd.DataFrame(data=drange, columns=['usedate'])

def sum_scores(d):
    return df[(df['date1'] <= d) & (df['date2'] >= d)][['score1', 'score2']].sum()

# apply works here too, and is about equally fast in my testing
newdf[['score1sum', 'score2sum']] = newdf['usedate'].transform(sum_scores)

# newdf is same to above

Timings are comparable

# Jupyter timeit cell magic
%%timeit 
newdf['score1sum'] = [df[(df['date1'] <= d) & (df['date2'] >= d)]['score1'].sum() for d in drange]
newdf['score1sum'] = [df[(df['date1'] <= d) & (df['date2'] >= d)]['score2'].sum() for d in drange]

100 loops, best of 3: 10.4 ms per loop

# Jupyter timeit line magic
%timeit newdf[['score1sum', 'score2sum']] = newdf['usedate'].transform(sum_scores) 

100 loops, best of 3: 8.51 ms per loop