可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
Is there a way to get the dataframe that union dataframe in loop?
this is a sample code
var fruits = List(
"apple"
,"orange"
,"melon"
)
for (x <- fruits){
var df = Seq(("aaa","bbb",x)).toDF("aCol","bCol","name")
}
I Would want to do some like
aCol | bCol | fruitsName
aaa,bbb,apple
aaa,bbb,orange
aaa,bbb,melon
Thanks again
回答1:
Steffen Schmitz's answer is the most concise one I believe.
Below is a more detailed answer if you are looking for more customization (of field types, etc):
import org.apache.spark.sql.types.{StructType, StructField, StringType}
import org.apache.spark.sql.Row
//initialize DF
val schema = StructType(
StructField("aCol", StringType, true) ::
StructField("bCol", StringType, true) ::
StructField("name", StringType, true) :: Nil)
var initialDF = spark.createDataFrame(sc.emptyRDD[Row], schema)
//list to iterate through
var fruits = List(
"apple"
,"orange"
,"melon"
)
for (x <- fruits) {
//union returns a new dataset
initialDF = initialDF.union(Seq(("aaa", "bbb", x)).toDF)
}
//initialDF.show()
references:
- How to create an empty DataFrame with a specified schema?
- https://spark.apache.org/docs/2.0.1/api/java/org/apache/spark/sql/Dataset.html
- https://docs.databricks.com/spark/latest/faq/append-a-row-to-rdd-or-dataframe.html
回答2:
You could created a sequence of DataFrame
s and then use reduce
:
val results = fruits.
map(fruit => Seq(("aaa", "bbb", fruit)).toDF("aCol","bCol","name")).
reduce(_.union(_))
results.show()
回答3:
If you have different/multiple dataframes you can use below code, which is efficient.
val newDFs = Seq(DF1,DF2,DF3)
newDFs.reduce(_ union _)
回答4:
In a for loop:
val fruits = List("apple", "orange", "melon")
( for(f <- fruits) yield ("aaa", "bbb", f) ).toDF("aCol", "bCol", "name")
回答5:
you can first create a sequence and then use toDF
to create Dataframe
.
scala> var dseq : Seq[(String,String,String)] = Seq[(String,String,String)]()
dseq: Seq[(String, String, String)] = List()
scala> for ( x <- fruits){
| dseq = dseq :+ ("aaa","bbb",x)
| }
scala> dseq
res2: Seq[(String, String, String)] = List((aaa,bbb,apple), (aaa,bbb,orange), (aaa,bbb,melon))
scala> val df = dseq.toDF("aCol","bCol","name")
df: org.apache.spark.sql.DataFrame = [aCol: string, bCol: string, name: string]
scala> df.show
+----+----+------+
|aCol|bCol| name|
+----+----+------+
| aaa| bbb| apple|
| aaa| bbb|orange|
| aaa| bbb| melon|
+----+----+------+
回答6:
Well... I think your question is a bit mis-guided.
As per my limited understanding of whatever you are trying to do, you should be doing following,
val fruits = List(
"apple",
"orange",
"melon"
)
val df = fruits
.map(x => ("aaa", "bbb", x))
.toDF("aCol", "bCol", "name")
And this should be sufficient.