Using `fread` to import csv file from an archive i

2020-02-26 00:45发布

问题:

I have a zip archive with several csv files in it. I would like to use fread to import selected csv files into R.

With read.csv I can get the data as follows without extracting the archive.

con <- unz("myarchive.zip", "file2.csv")
file2 <- read.csv(con, header=T, sep=",", stringsAsFactors = FALSE)
on.exit(close(con))

How to use data.table::fread to import the the data in the csv file into R from the archive without extracting it?

回答1:

fread can run shell commands to preprocess the file, so eg on Linux this works:

write.csv(mtcars, 'mtcars.csv')
zip('mtcars.csv.zip', 'mtcars.csv')
#  adding: mtcars.csv (deflated 52%)
fread('unzip -cq mtcars.csv.zip')
#                      V1  mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#  1:           Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#  2:       Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#  3:          Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#  4:      Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#  5:   Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#  6:             Valiant 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#  7:          Duster 360 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#  8:           Merc 240D 24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#  9:            Merc 230 22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
# 10:            Merc 280 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
# 11:           Merc 280C 17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
# 12:          Merc 450SE 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
# 13:          Merc 450SL 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
# 14:         Merc 450SLC 15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
# 15:  Cadillac Fleetwood 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
# 16: Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
# 17:   Chrysler Imperial 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
# 18:            Fiat 128 32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
# 19:         Honda Civic 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
# 20:      Toyota Corolla 33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
# 21:       Toyota Corona 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
# 22:    Dodge Challenger 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
# 23:         AMC Javelin 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
# 24:          Camaro Z28 13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
# 25:    Pontiac Firebird 19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
# 26:           Fiat X1-9 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
# 27:       Porsche 914-2 26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
# 28:        Lotus Europa 30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
# 29:      Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
# 30:        Ferrari Dino 19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
# 31:       Maserati Bora 15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
# 32:          Volvo 142E 21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
#                      V1  mpg cyl  disp  hp drat    wt  qsec vs am gear carb