Is there a way I can find the r confidence interval in Python?
In R i could do something like:
cor.test(m, h)
Pearson's product-moment correlation
data: m and h
t = 0.8974, df = 4, p-value = 0.4202
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.6022868 0.9164582
sample estimates:
cor
0.4093729
In Python I can calculate r (cor) using:
r,p = scipy.stats.pearsonr(df.age, df.pets)
But that doesn't return the r confidence interval.
Here's one way to calculate confidence internal
First get the correlation value (pearson's)
In [85]: from scipy import stats
In [86]: corr = stats.pearsonr(df['col1'], df['col2'])
In [87]: corr
Out[87]: (0.551178607008175, 0.0)
Use the Fisher transformation to get z
In [88]: z = np.arctanh(corr[0])
In [89]: z
Out[89]: 0.62007264620685021
And, the sigma value i.e standard error
In [90]: sigma = (1/((len(df.index)-3)**0.5))
In [91]: sigma
Out[91]: 0.013840913308956662
Get normal 95% interval probability density function for normal continuous random variable apply two-sided
conditional formula
In [92]: cint = z + np.array([-1, 1]) * sigma * stats.norm.ppf((1+0.95)/2)
Finally take hyperbolic tangent to get interval values for 95%
In [93]: np.tanh(cint)
Out[93]: array([ 0.53201034, 0.56978224])