I want to make a function in pure Lua that generates a fraction (23 bits), an exponent (8 bits), and a sign (1 bit) from a number, so that the number is approximately equal to math.ldexp(fraction, exponent - 127) * (sign == 1 and -1 or 1)
, and then packs the generated values into 32 bits.
A certain function in the math library caught my attention:
The frexp function breaks down the floating-point value (v) into a mantissa (m) and an exponent (n), such that the absolute value of m is greater than or equal to 0.5 and less than 1.0, and v = m * 2^n.
Note that math.ldexp is the inverse operation.
However, I can't think of any way to pack non-integer numbers properly. As the the mantissa returned by this function is not an integer, I'm not sure if I can use it.
Is there any efficient way to do something similar to math.frexp()
which returns an integer as the mantissa? Or is there perhaps a better way to pack numbers in the IEEE754 single-precision floating-point format in Lua?
Thank you in advance.
Edit
I hereby present the (hopefully) final version of the functions I made:
function PackIEEE754(number)
if number == 0 then
return string.char(0x00, 0x00, 0x00, 0x00)
elseif number ~= number then
return string.char(0xFF, 0xFF, 0xFF, 0xFF)
else
local sign = 0x00
if number < 0 then
sign = 0x80
number = -number
end
local mantissa, exponent = math.frexp(number)
exponent = exponent + 0x7F
if exponent <= 0 then
mantissa = math.ldexp(mantissa, exponent - 1)
exponent = 0
elseif exponent > 0 then
if exponent >= 0xFF then
return string.char(sign + 0x7F, 0x80, 0x00, 0x00)
elseif exponent == 1 then
exponent = 0
else
mantissa = mantissa * 2 - 1
exponent = exponent - 1
end
end
mantissa = math.floor(math.ldexp(mantissa, 23) + 0.5)
return string.char(
sign + math.floor(exponent / 2),
(exponent % 2) * 0x80 + math.floor(mantissa / 0x10000),
math.floor(mantissa / 0x100) % 0x100,
mantissa % 0x100)
end
end
function UnpackIEEE754(packed)
local b1, b2, b3, b4 = string.byte(packed, 1, 4)
local exponent = (b1 % 0x80) * 0x02 + math.floor(b2 / 0x80)
local mantissa = math.ldexp(((b2 % 0x80) * 0x100 + b3) * 0x100 + b4, -23)
if exponent == 0xFF then
if mantissa > 0 then
return 0 / 0
else
mantissa = math.huge
exponent = 0x7F
end
elseif exponent > 0 then
mantissa = mantissa + 1
else
exponent = exponent + 1
end
if b1 >= 0x80 then
mantissa = -mantissa
end
return math.ldexp(mantissa, exponent - 0x7F)
end
I improved the way to utilise the implicit bit and added proper support for special values such as NaN and infinity. I based the formatting on that of the script catwell linked to.
I thank both of you for your great advice.