可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I would like to create a 3D array in Python (2.7) to use like this:
distance[i][j][k]
And the sizes of the array should be the size of a variable I have. (n*n*n)
I tried using:
distance = [[[]*n]*n]
but that didn't seem to work.
Any ideas? Thanks a lot!
EDIT: I can only use the deafult libraries, and the method of multiplying (ie [[0]*n]*n) wont work because they are linked to the same pointer and I need all of the values to be individual
EDIT2: Already solved by answer below.
回答1:
You should use a list comprehension:
>>> import pprint
>>> n = 3
>>> distance = [[[0 for k in xrange(n)] for j in xrange(n)] for i in xrange(n)]
>>> pprint.pprint(distance)
[[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]]
>>> distance[0][1]
[0, 0, 0]
>>> distance[0][1][2]
0
You could have produced a data structure with a statement that looked like the one you tried, but it would have had side effects since the inner lists are copy-by-reference:
>>> distance=[[[0]*n]*n]*n
>>> pprint.pprint(distance)
[[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]]
>>> distance[0][0][0] = 1
>>> pprint.pprint(distance)
[[[1, 0, 0], [1, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0], [1, 0, 0]]]
回答2:
numpy.array
s are designed just for this case:
numpy.zeros((i,j,k))
will give you an array of dimensions ijk, filled with zeroes.
depending what you need it for, numpy may be the right library for your needs.
回答3:
The right way would be
[[[0 for _ in range(n)] for _ in range(n)] for _ in range(n)]
(What you're trying to do should be written like (for NxNxN)
[[[0]*n]*n]*n
but that is not correct, see @Adaman comment why).
回答4:
d3 = [[[0 for col in range(4)]for row in range(4)] for x in range(6)]
d3[1][2][1] = 144
d3[4][3][0] = 3.12
for x in range(len(d3)):
print d3[x]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 144, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [3.12, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
回答5:
"""
Create 3D array for given dimensions - (x, y, z)
@author: Naimish Agarwal
"""
def three_d_array(value, *dim):
"""
Create 3D-array
:param dim: a tuple of dimensions - (x, y, z)
:param value: value with which 3D-array is to be filled
:return: 3D-array
"""
return [[[value for _ in xrange(dim[2])] for _ in xrange(dim[1])] for _ in xrange(dim[0])]
if __name__ == "__main__":
array = three_d_array(False, *(2, 3, 1))
x = len(array)
y = len(array[0])
z = len(array[0][0])
print x, y, z
array[0][0][0] = True
array[1][1][0] = True
print array
Prefer to use numpy.ndarray
for multi-dimensional arrays.
回答6:
You can also use a nested for
loop like shown below
n = 3
arr = []
for x in range(n):
arr.append([])
for y in range(n):
arr[x].append([])
for z in range(n):
arr[x][y].append(0)
print(arr)
回答7:
If you insist on everything initializing as empty, you need an extra set of brackets on the inside ([[]] instead of [], since this is "a list containing 1 empty list to be duplicated" as opposed to "a list containing nothing to duplicate"):
distance=[[[[]]*n]*n]*n
回答8:
def n_arr(n, default=0, size=1):
if n is 0:
return default
return [n_arr(n-1, default, size) for _ in range(size)]
arr = n_arr(3, 42, 3)
assert arr[2][2][2], 42