Create 3D array using Python

2020-02-17 01:00发布

问题:

I would like to create a 3D array in Python (2.7) to use like this:

distance[i][j][k]

And the sizes of the array should be the size of a variable I have. (n*n*n)

I tried using:

distance = [[[]*n]*n]

but that didn't seem to work.

Any ideas? Thanks a lot!

EDIT: I can only use the deafult libraries, and the method of multiplying (ie [[0]*n]*n) wont work because they are linked to the same pointer and I need all of the values to be individual

EDIT2: Already solved by answer below.

回答1:

You should use a list comprehension:

>>> import pprint
>>> n = 3
>>> distance = [[[0 for k in xrange(n)] for j in xrange(n)] for i in xrange(n)]
>>> pprint.pprint(distance)
[[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
 [[0, 0, 0], [0, 0, 0], [0, 0, 0]],
 [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]
>>> distance[0][1]
[0, 0, 0]
>>> distance[0][1][2]
0

You could have produced a data structure with a statement that looked like the one you tried, but it would have had side effects since the inner lists are copy-by-reference:

>>> distance=[[[0]*n]*n]*n
>>> pprint.pprint(distance)
[[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
 [[0, 0, 0], [0, 0, 0], [0, 0, 0]],
 [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]
>>> distance[0][0][0] = 1
>>> pprint.pprint(distance)
[[[1, 0, 0], [1, 0, 0], [1, 0, 0]],
 [[1, 0, 0], [1, 0, 0], [1, 0, 0]],
 [[1, 0, 0], [1, 0, 0], [1, 0, 0]]]


回答2:

numpy.arrays are designed just for this case:

 numpy.zeros((i,j,k))

will give you an array of dimensions ijk, filled with zeroes.

depending what you need it for, numpy may be the right library for your needs.



回答3:

The right way would be

[[[0 for _ in range(n)] for _ in range(n)] for _ in range(n)]

(What you're trying to do should be written like (for NxNxN)

[[[0]*n]*n]*n

but that is not correct, see @Adaman comment why).



回答4:

d3 = [[[0 for col in range(4)]for row in range(4)] for x in range(6)]

d3[1][2][1]  = 144

d3[4][3][0]  = 3.12

for x in range(len(d3)):
    print d3[x]



[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 144, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [3.12, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]


回答5:

"""
Create 3D array for given dimensions - (x, y, z)

@author: Naimish Agarwal
"""


def three_d_array(value, *dim):
    """
    Create 3D-array
    :param dim: a tuple of dimensions - (x, y, z)
    :param value: value with which 3D-array is to be filled
    :return: 3D-array
    """

    return [[[value for _ in xrange(dim[2])] for _ in xrange(dim[1])] for _ in xrange(dim[0])]

if __name__ == "__main__":
    array = three_d_array(False, *(2, 3, 1))
    x = len(array)
    y = len(array[0])
    z = len(array[0][0])
    print x, y, z

    array[0][0][0] = True
    array[1][1][0] = True

    print array

Prefer to use numpy.ndarray for multi-dimensional arrays.



回答6:

You can also use a nested for loop like shown below

n = 3
arr = []
for x in range(n):
    arr.append([])
    for y in range(n):
        arr[x].append([])
        for z in range(n):
            arr[x][y].append(0)
print(arr)


回答7:

If you insist on everything initializing as empty, you need an extra set of brackets on the inside ([[]] instead of [], since this is "a list containing 1 empty list to be duplicated" as opposed to "a list containing nothing to duplicate"):

distance=[[[[]]*n]*n]*n


回答8:

def n_arr(n, default=0, size=1):
    if n is 0:
        return default

    return [n_arr(n-1, default, size) for _ in range(size)]

arr = n_arr(3, 42, 3)
assert arr[2][2][2], 42