Using plot(hclust(dist(x)))
method, I was able to draw a cluster tree map. It works. Yet I would like to get a list of all clusters, not a tree diagram, because I have huge amount of data (like 150K nodes) and the plot gets messy.
In other words, lets say if a b c
is a cluster and if d e f g
is a cluster then I would like to get something like this:
1 a,b,c
2 d,e,f,g
Please note that this is not exactly what I want to get as an "output". It is just an example. I just would like to be able to get a list of clusters instead of a tree plot It could be vector, matrix or just simple numbers that show which groups elements belong to.
How is this possible?
I will use the dataset available in R to demonstrate how to cut a tree into desired number of pieces. Result is a table.
Construct a hclust object.
hc <- hclust(dist(USArrests), "ave")
#plot(hc)
You can now cut the tree into as many branches as you want. For my next trick, I will split the tree into two groups. You set the number of cuts with the k
parameter. See ?cutree
and the use of paramter h
which may be more useful to you (see cutree(hc, k = 2) == cutree(hc, h = 110)
).
cutree(hc, k = 2)
Alabama Alaska Arizona Arkansas California
1 1 1 2 1
Colorado Connecticut Delaware Florida Georgia
2 2 1 1 2
Hawaii Idaho Illinois Indiana Iowa
2 2 1 2 2
Kansas Kentucky Louisiana Maine Maryland
2 2 1 2 1
Massachusetts Michigan Minnesota Mississippi Missouri
2 1 2 1 2
Montana Nebraska Nevada New Hampshire New Jersey
2 2 1 2 2
New Mexico New York North Carolina North Dakota Ohio
1 1 1 2 2
Oklahoma Oregon Pennsylvania Rhode Island South Carolina
2 2 2 2 1
South Dakota Tennessee Texas Utah Vermont
2 2 2 2 2
Virginia Washington West Virginia Wisconsin Wyoming
2 2 2 2 2
lets say,
y<-dist(x)
clust<-hclust(y)
groups<-cutree(clust, k=3)
x<-cbind(x,groups)
now you will get for each record, the cluster group.
You can subset the dataset as well:
x1<- subset(x, groups==1)
x2<- subset(x, groups==2)
x3<- subset(x, groups==3)