I have a Spark 1.5.0 DataFrame with a mix of null
and empty strings in the same column. I want to convert all empty strings in all columns to null
(None
, in Python). The DataFrame may have hundreds of columns, so I'm trying to avoid hard-coded manipulations of each column.
See my attempt below, which results in an error.
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
## Create a test DataFrame
testDF = sqlContext.createDataFrame([Row(col1='foo', col2=1), Row(col1='', col2=2), Row(col1=None, col2='')])
testDF.show()
## +----+----+
## |col1|col2|
## +----+----+
## | foo| 1|
## | | 2|
## |null|null|
## +----+----+
## Try to replace an empty string with None/null
testDF.replace('', None).show()
## ValueError: value should be a float, int, long, string, list, or tuple
## A string value of null (obviously) doesn't work...
testDF.replace('', 'null').na.drop(subset='col1').show()
## +----+----+
## |col1|col2|
## +----+----+
## | foo| 1|
## |null| 2|
## +----+----+
It is as simple as this:
from pyspark.sql.functions import col, when
def blank_as_null(x):
return when(col(x) != "", col(x)).otherwise(None)
dfWithEmptyReplaced = testDF.withColumn("col1", blank_as_null("col1"))
dfWithEmptyReplaced.show()
## +----+----+
## |col1|col2|
## +----+----+
## | foo| 1|
## |null| 2|
## |null|null|
## +----+----+
dfWithEmptyReplaced.na.drop().show()
## +----+----+
## |col1|col2|
## +----+----+
## | foo| 1|
## +----+----+
If you want to fill multiple columns you can for example reduce:
to_convert = set([...]) # Some set of columns
reduce(lambda df, x: df.withColumn(x, blank_as_null(x)), to_convert, testDF)
or use comprehension:
exprs = [
blank_as_null(x).alias(x) if x in to_convert else x for x in testDF.columns]
testDF.select(*exprs)
If you want to specifically operate on string fields please check the answer by robin-loxley.
My solution is much better than all the solutions I'v seen so far, which can deal with as many fields as you want, see the little function as the following:
// Replace empty Strings with null values
private def setEmptyToNull(df: DataFrame): DataFrame = {
val exprs = df.schema.map { f =>
f.dataType match {
case StringType => when(length(col(f.name)) === 0, lit(null: String).cast(StringType)).otherwise(col(f.name)).as(f.name)
case _ => col(f.name)
}
}
df.select(exprs: _*)
}
You can easily rewrite the function above in Python.
I learned this trick from @liancheng
Simply add on top of zero323's and soulmachine's answers. To convert for all StringType fields.
from pyspark.sql.types import StringType
string_fields = []
for i, f in enumerate(test_df.schema.fields):
if isinstance(f.dataType, StringType):
string_fields.append(f.name)
UDFs are not terribly efficient. The correct way to do this using a built-in method is:
df = df.withColumn('myCol', when(col('myCol') == '', None).otherwise(col('myCol')))
This is a different version of soulmachine's solution, but I don't think you can translate this to Python as easily:
def emptyStringsToNone(df: DataFrame): DataFrame = {
df.schema.foldLeft(df)(
(current, field) =>
field.dataType match {
case DataTypes.StringType =>
current.withColumn(
field.name,
when(length(col(field.name)) === 0, lit(null: String)).otherwise(col(field.name))
)
case _ => current
}
)
}