what is the fastest method to calculate this, i saw some people using matrices and when i searched on the internet, they talked about eigen values and eigen vectors (no idea about this stuff)...there was a question which reduced to a recursive equation f(n) = (2*f(n-1)) + 2 , and f(1) = 1, n could be upto 10^9.... i already tried using DP, storing upto 1000000 values and using the common fast exponentiation method, it all timed out im generally weak in these modulo questions, which require computing large values
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
回答1:
f(n) = (2*f(n-1)) + 2 with f(1)=1
is equivalent to
(f(n)+2) = 2 * (f(n-1)+2)
= ...
= 2^(n-1) * (f(1)+2) = 3 * 2^(n-1)
so that finally
f(n) = 3 * 2^(n-1) - 2
where you can then apply fast modular power methods.
回答2:
Modular exponentiation by the square-and-multiply method:
function powerMod(b, e, m)
x := 1
while e > 0
if e%2 == 1
x, e := (x*b)%m, e-1
else b, e := (b*b)%m, e//2
return x